Neurochemical Research

, Volume 40, Issue 9, pp 1919–1928 | Cite as

Increased Oxidative Damage and Reduced DNA Repair Enzyme XPD Involvement in High Glucose-Mediated Enhancement of Levobupivacaine-Induced Neurotoxicity

  • ZhongJie Liu
  • Wei Zhao
  • QingGuo Zhang
  • LuYing Lai
  • Shan Jiang
  • Jing Zhang
  • ShiYuan XuEmail author
Original Paper


Levobupivacaine is one of the major clinical local anesthetics, but it can cause neuron toxic damage. Hyperglycemia can cause neuronal DNA oxidative damage and inhibit expression of the DNA repair gene Xeroderma pigmentosum complementation group D (XPD). This study was designed to determine whether high glucose levels inhibit XPD expression and enhance levobupivacaine-induced DNA damage. We evaluated XPD mRNA and protein expression in SH-SY5Y cells after glucose and levobupivacaine exposure. We next investigated cells reactive oxygen species (ROS) levels, DNA damage and apoptosis with redox-sensitive fluorescent dye DCFH-DA (2′,7′-dichlorofluorescein diacetate), comet assays, flow cytometry, and TUNEL (terminal deoxynucleotidyl transferased UTP nick end labeling) assays. XPD expression was inhibited in cells exposed to prolonged high glucose with a concomitant increase in ROS production and more severe DNA damage compared to control culture conditions, and these changes were further exacerbated by levobupivacaine. Our findings indicate that subjects with diabetes may experience more detrimental effects following local anesthetic use.


XPD High glucose Neurotoxicity Levobupivacaine SH-SY5Y cells 



Xeroderma pigmentosum complementation group D


Nucleotide excision repair


Olive tail moment



This study was supported by the National Science Foundation of China (Grant No. 81271390) and Natural Science Foundation for the Youth (Grant No. 81400995). None of the authors have financial relationships with biotechnology manufacturers, pharmaceutical companies, or other commercial entities with an interest in the subject matter or materials discussed in the manuscripts.


  1. 1.
    Hebl JR, Kopp SL, Schroeder DR, Horlocker TT (2006) Neurologic complications after neuraxial anesthesia or analgesia in patients with preexisting peripheral sensorimotor neuropathy or diabetic polyneuropathy. Anesth Analg 103:1294–1299. doi: 10.1213/01.ane.0000243384.75713.df CrossRefPubMedGoogle Scholar
  2. 2.
    Park CJ, Park SA, Yoon TG, Lee SJ, Yum KW, Kim HJ (2005) Bupivacaine induces apoptosis via ROS in the Schwann cell line. J Dent Res 84:852–857. doi: 10.1177/154405910508400914 CrossRefPubMedGoogle Scholar
  3. 3.
    Lu J, Xu SY, Zhang QG, Lei HY (2011) Bupivacaine induces reactive oxygen species production via activation of the AMP-activated protein kinase-dependent pathway. Pharmacology 87:121–129. doi: 10.1159/000323402 CrossRefPubMedGoogle Scholar
  4. 4.
    Perez-Castro R, Patel S, Garavito-Aguilar ZV, Rosenberg A, Recio-Pinto E, Zhang J, Blanck TJ, Xu F (2009) Cytotoxicity of local anesthetics in human neuronal cells. Anesth Analg 108:997–1007. doi: 10.1213/ane.0b013e31819385e1 CrossRefPubMedGoogle Scholar
  5. 5.
    Johnson ME, Saenz JA, DaSilva AD, Uhl CB, Gores GJ (2002) Effect of local anesthetic on neuronal cytoplasmic calcium and plasma membrane lysis (necrosis) in a cell culture model. Anesthesiology 97:1466–1476CrossRefPubMedGoogle Scholar
  6. 6.
    Muguruma T, Sakura S, Kirihara Y, Saito Y (2006) Comparative somatic and visceral antinociception and neurotoxicity of intrathecal bupivacaine, levobupivacaine, and dextrobupivacaine in rats. Anesthesiology 104:1249–1256CrossRefPubMedGoogle Scholar
  7. 7.
    Borazan M, Karalezli A, Oto S, Akova YA, Karabay G, Kocbiyik A, Celasun B, Demirhan B (2009) Induction of apoptosis of rabbit corneal endothelial cells by preservative-free lidocaine hydrochloride 2%, ropivacaine 1%, or levobupivacaine 0.75%. J Cataract Refract Surg 35:753–758. doi: 10.1016/j.jcrs.2008.12.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Takenami T, Wang G, Nara Y, Fukushima S, Yagishita S, Hiruma H, Kawakami T, Okamoto H (2012) Intrathecally administered ropivacaine is less neurotoxic than procaine, bupivacaine, and levobupivacaine in a rat spinal model. Can J Anaesth 59:456–465. doi: 10.1007/s12630-012-9685-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Pop-Busui R, Sima A, Stevens M (2006) Diabetic neuropathy andoxidative stress. Diabetes Metab Res Rev 22:257–273CrossRefPubMedGoogle Scholar
  10. 10.
    Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14:241–245CrossRefGoogle Scholar
  11. 11.
    Spencer DM, Bilardi RA, Koch TH, Post GC, Nafie JW, Kimura K, Cutts SM, Phillips DR (2008) DNA repair in response to anthracycline-DNA adducts: a role for both homologous recombination and nucleotide excision repair. Mutat Res 638:110–121. doi: 10.1016/j.mrfmmm.2007.09.005 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang G, Vasquez KM (2014) Impact of alternative DNA structures on DNA damage, DNA repair, and genetic instability. DNA Repair (Amst) 19:143–151. doi: 10.1016/j.dnarep.2014.03.017 CrossRefGoogle Scholar
  13. 13.
    So EY, Ouchi T (2014) Decreased DNA repair activity in bone marrow due to low expression of DNA damage repair proteins. Cancer Biol Ther 15:906–910. doi: 10.4161/cbt.28883 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Melis JP, van Steeg H, Luijten M (2013) Oxidative DNA damage and nucleotide excision repair. Antioxid Redox Signal 18:2409–2419. doi: 10.1089/ars.2012.5036 PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Liu H, Rudolf J, Johnson KA, McMahon SA, Oke M, Carter L, McRobbie AM, Brown SE, Naismith JH, White MF (2008) Structure of the DNA repair helicase XPD. Cell 133:801–812. doi: 10.1016/j.cell.2008.04.029 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Laine JP, Mocquet V, Bonfanti M, Braun C, Egly JM, Brousset P (2007) Common XPD (ERCC2) polymorphisms have no measurable effect on nucleotide excision repair and basal transcription. DNA Repair (Amst) 6:1264–1270CrossRefGoogle Scholar
  17. 17.
    Puthanveetil P, Zhang D, Wang Y, Wang F, Wan A, Abrahani A, Rodrigues B (2012) Diabetes triggers a PARP1 mediated death pathway in the heart through participation of FoxO1. J Mol Cell Cardiol 53:677–686. doi: 10.1016/j.yjmcc.2012.08.013 CrossRefPubMedGoogle Scholar
  18. 18.
    Takayama K, Salazar EP, Broughton BC, Lehmann AR, Sarasin A, Thompson LH, Weber CA (1996) Defects in the DNA repair and transcription gene ERCC2 (XPD) in trichothiodystrophy. Am J Hum Genet 58:263–270PubMedCentralPubMedGoogle Scholar
  19. 19.
    Seker H, Butkiewicz D, Bowman ED, Rusin M, Hedayati M, Grossman L, Harris CC (2001) Functional significance of XPD polymorphic variants: attenuated apoptosis in human lymphoblastoid cells with the XPD 312 Asp/Asp genotype. Cancer Res 61:7430–7434PubMedGoogle Scholar
  20. 20.
    Broughton BC, Thompson AF, Harcourt SA, Vermeulen W, Hoeijmakers JH, Botta E, Stefanini M, King MD, Weber CA, Cole J, Et A (1995) Molecular and cellular analysis of the DNA repair defect in a patient in xeroderma pigmentosum complementation group D who has the clinical features of xerodermapigmentosum and Cockayne syndrome. Am J Hum Genet 56:167–174PubMedCentralPubMedGoogle Scholar
  21. 21.
    Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH (2014) Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 15:465–481. doi: 10.1038/nrm3822 CrossRefPubMedGoogle Scholar
  22. 22.
    Zherebitskaya E, Akude E, Smith DR, Fernyhough P (2009) Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes 58:1356–1364. doi: 10.2337/db09-0034 PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Kilarkaje N, Al-Bader MM (2015) Diabetes-induced oxidative DNA damage alters p53-p21CIP1/Waf1 signaling in the rat testis. Reprod Sci 22:102–112. doi: 10.1177/1933719114533729 CrossRefPubMedGoogle Scholar
  24. 24.
    Shimoike T, Inoguchi T, Umeda F, Nawata H, Kawano K, Ochi H (2000) The meaning of serum levels of advanced glycosylation end products in diabetic nephropathy. Metabolism 49:1030–1035CrossRefPubMedGoogle Scholar
  25. 25.
    Merkel P, Khoury N, Bertolotto C, Perfetti R (2003) Insulin and glucose regulate the expression of the DNA repair enzyme XPD. Mol Cell Endocrinol 201:75–85CrossRefPubMedGoogle Scholar
  26. 26.
    Inturi S, Tewari-Singh N, Agarwal C, White CW, Agarwal R (2014) Activation of DNA damage repair pathways in response to nitrogen mustard-induced DNA damage and toxicity in skin keratinocytes. Mutat Res 763–764:53–63. doi: 10.1016/j.mrfmmm.2014.04.002 CrossRefPubMedGoogle Scholar
  27. 27.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108CrossRefPubMedGoogle Scholar
  28. 28.
    Sontz PA, Mui TP, Fuss JO, Tainer JA, Barton JK (2012) DNA charge transport as a first step in coordinating the detection of lesions by repair proteins. Proc Natl Acad Sci USA 109:1856–1861. doi: 10.1073/pnas.1120063109 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Allan JM, Smith AG, Wheatley K, Hills RK, Travis LB, Hill DA, Swirsky DM, Morgan GJ, Wild CP (2004) Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 104:3872–3877CrossRefPubMedGoogle Scholar
  30. 30.
    Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JH, Egly JM (1994) The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J 13:2388–2392PubMedCentralPubMedGoogle Scholar
  31. 31.
    Abdulrahman W, Iltis I, Radu L, Braun C, Maglott-Roth A, Giraudon C, Egly JM, Poterszman A (2013) ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities. Proc Natl Acad Sci USA 110:E633–E642. doi: 10.1073/pnas.1213981110 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • ZhongJie Liu
    • 1
  • Wei Zhao
    • 1
  • QingGuo Zhang
    • 1
  • LuYing Lai
    • 1
  • Shan Jiang
    • 1
  • Jing Zhang
    • 1
  • ShiYuan Xu
    • 1
    Email author
  1. 1.Department of Anesthesiology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina

Personalised recommendations