Neurochemical Research

, Volume 40, Issue 10, pp 2121–2130 | Cite as

r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement

  • Joshua S. Beckmann
  • Andrew C. Meyer
  • M. Pivavarchyk
  • David B. Horton
  • Guangrong Zheng
  • Andrew M. Smith
  • Thomas E. Wooters
  • J. Michael McIntosh
  • Peter A. Crooks
  • Michael T. Bardo
  • Linda P. Dwoskin
Original Paper


α6β2* nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [3H]nicotine and [3H]methyllycaconitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [3H]nicotine or [3H]methyllycaconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule that acts as a potent and selective antagonist at α6β2* nAChRs to specifically decrease nicotine self-administration in rats, thus, establishing r-bPiDI as a lead compound for development as a treatment for nicotine addiction.


Nicotine Abuse Dopamine Reinforcement 


  1. 1.
    Shiffman S, Hickcox M, Paty JA, Gnys M, Kassel JD, Richards TJ (1996) Progression from a smoking lapse to relapse: prediction from abstinence violation effects, nicotine dependence, and lapse characteristics. J Consult Clin Psychol 64:993–1002CrossRefPubMedGoogle Scholar
  2. 2.
    Fiore MC (2008) Treating tobacco use and dependence: 2008 update: clinical practice guideline. DIANE Publishing, PennsylvaniaGoogle Scholar
  3. 3.
    Harmey D, Griffin PR, Kenny PJ (2012) Development of novel pharmacotherapeutics for tobacco dependence: progress and future directions. Nicotine Tob Res 14:1300–1318PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Hajek P, Stead LF, West R, Jarvis M, Hartmann-Boyce, J, Lancaster T (2013) Relapse prevention interventions for smoking cessation. Cochrane Database Syst Rev. Art. No. CD003999. doi:10.1002/1465188458
  5. 5.
    Corrigall WA (1991) Understanding brain mechanisms in nicotine reinforcement. Br J Addict 86:507–510CrossRefPubMedGoogle Scholar
  6. 6.
    Picciotto MR, Corrigall WA (2002) Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci 22:3338–3341PubMedGoogle Scholar
  7. 7.
    Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225CrossRefPubMedGoogle Scholar
  8. 8.
    Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65:1526–1535CrossRefPubMedGoogle Scholar
  9. 9.
    Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC, Marks MJ, Whiteaker P (2005) Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 67:2007–2015CrossRefPubMedGoogle Scholar
  10. 10.
    Visanji NP, O’Neill MJ, Duty S (2006) Nicotine, but neither the alpha4beta2 ligand RJR2403 nor an alpha7 nAChR subtype selective agonist, protects against a partial 6-hydroxydopamine lesion of the rat median forebrain bundle. Neuropharmacology 51:506–516CrossRefPubMedGoogle Scholar
  11. 11.
    Yang KC, Jin GZ, Wu J (2009) Mysterious alpha6-containing nAChRs: function, pharmacology, and pathophysiology. Acta Pharmacol Sin 30:740–751PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, Changeux JP, Maskos U, Fratta W (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28:12318–12327PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Faure P, Tolu S, Valverde S, Naude J (2014) Role of nicotinic acetylcholine receptors in regulating dopamine neuronal activity. Neuroscience 282:86–100CrossRefGoogle Scholar
  14. 14.
    Sanjakdar SS, Maldoon PP, Marks MJ, Brunzell DH, Maskos U, McIntosh JM, Bowers MS, Damaj MI (2015) Differential roles of α6β2* and α4β2* neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice. Neuropsychopharmacology 40:350–360CrossRefPubMedGoogle Scholar
  15. 15.
    Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, Bupp S, Heintz N, McIntosh JM, Bencherif M, Marks MJ, Lester HA (2008) In vivo activation of midbrain dopamine neurons via sensitized, high-affinity alpha 6 nicotinic acetylcholine receptors. Neuron 60:123–136PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Wang Y, Lee JW, Oh G, Grady SR, McIntosh JM, Brunzell DH, Cannon JR, Drenan RM (2014) Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs. J Neurochem 129:315–327PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Moretti M, Mugnaini M, Tessari M, Zoli M, Gaimarri A, Manfredi I, Pistillo F, Clementi F, Gotti C (2010) A comparative study of the effects of the intravenous self-administration or subcutaneous minipump infusion of nicotine on the expression of brain neuronal nicotinic receptor subtypes. Mol Pharmacol 78:287–296CrossRefPubMedGoogle Scholar
  18. 18.
    Marks MJ, Grady SR, Salminen O, Paley MA, Wageman CR, McIntosh JM, Whiteaker P (2014) α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration. J Neurochem 130:185–198PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Perez XA, McIntosh JM, Quik M (2013) Long-term nicotine treatment downregulates α6β* nicotinic receptor expression and function in nucleus accumbens. J Neurochem 127:762–771CrossRefPubMedGoogle Scholar
  20. 20.
    Kulak JM, Nguyen TA, Olivera BM, McIntosh JM (1997) Alpha-conotoxin MII blocks nicotine-stimulated dopamine release in rat striatal synaptosomes. J Neurosci 17:5263–5270PubMedGoogle Scholar
  21. 21.
    Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ (2008) Alpha6-containing nicotinic acetylcholine receptors dominate the nicotine control of dopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33:2158–2166CrossRefPubMedGoogle Scholar
  22. 22.
    Gotti C, Guiducci S, Tedesco V, Corbioli S, Zanetti L, Moretti M, Zanardi A, Rimondini R, Mugnaini M, Clementi F, Chiamulera C, Zoli M (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci 30:5311–5325CrossRefPubMedGoogle Scholar
  23. 23.
    Wickham R, Solecki W, Rathbun L, McIntosh JM, Addy NA (2013) Ventral tegmental area α6β2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core. Psychopharmacology 229:73–82PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Jackson KJ, Kota DH, Martin BR, Damaj MI (2009) The role of various nicotinic receptor subunits and factors influencing nicotine conditioned place aversion. Neuropharmacology 56:970–974CrossRefPubMedGoogle Scholar
  25. 25.
    Brunzell DH, Boschen KE, Hendrick ES, Beardsley PM, McIntosh JM (2010) Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine. Neuropsychopharmacology 35:665–673PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Crooks PA, Bardo M, Dwoskin LP (2014) Nicotinic receptor antagonists as treatments for nicotine abuse. Adv Pharmacol 69:513–551PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    De Biasi M, Mclaughlin I, Perez EE, Crooks PA, Dwoskin LP, Bardo MT, Pentel P, Hatsukami D (2014) Scientific overview: 2013 BBC plenary symposium on tobacco addiction. Drug Alcohol Depend 141:107–117PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Brunzell DH, McIntosh JM, Papke RL (2014) Diverse strategies targeting α7 homomeric and α6β2* heteromeric nicotinic acetylcholine receptors for smoking cessation. Ann NY Acad Sci 1327:27–45PubMedCentralPubMedGoogle Scholar
  29. 29.
    Dwoskin LP, Wooters TE, Sumithran SP, Siripurapu KB, Joyce BM, Lockman PR, Manda VK, Ayers JT, Zhang Z, Deaciuc AG, McIntosh JM, Crooks PA, Bardo MT (2008) N, N’-Alkane-diyl-bis-3-picoliniums as nicotinic receptor antagonists: inhibition of nicotine-evoked dopamine release and hyperactivity. J Pharmacol Exp Ther 326:563–576PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Rahman S, Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT (2007) The effects of a novel nicotinic receptor antagonist N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute and repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology 52:755–763CrossRefPubMedGoogle Scholar
  31. 31.
    Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT (2006) Effect of a novel nicotinic receptor antagonist, N,N’-dodecane-1,12-diyl-bis-3-picolinium dibromide, on nicotine self-administration and hyperactivity in rats. Psychopharmacology 184:426–434CrossRefPubMedGoogle Scholar
  32. 32.
    Wooters TE, Smith AM, Pivavarchyk M, Siripurapu KB, McIntosh JM, Zhang Z, Crooks PA, Bardo MT, Dwoskin LP (2011) bPiDI: a novel selective alpha6beta2* nicotinic receptor antagonist and preclinical candidate treatment for nicotine abuse. Br J Pharmacol 163:346–357PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Smith AM, Pivavarchyk M, Wooters TE, Zhang Z, Zheng G, McIntosh JM, Crooks PA, Bardo MT, Dwoskin LP (2010) Repeated nicotine administration robustly increases bPiDDB inhibitory potency at alpha6beta2-containing nicotinic receptors mediating nicotine-evoked dopamine release. Biochem Pharmacol 80:402–409PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Zhang Z, Zheng G, Pivavarchyk M, Deaciuc AG, Dwoskin LP, Crooks PA (2011) Novel bis-, tris-, tetrakis-tertiary amino analogs as antagonists at neuronal nicotinic receptors that mediate nicotine-evoked dopamine release. Bioorg Med Chem Lett 21:88–91PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Cartier GE, Yoshikami D, Gray WR, Luo S, Olivera BM, McIntosh JM (1996) A new alpha-conotoxin which targets alpha3beta2 nicotinic acetylcholine receptors. J Biol Chem 271:7522–7528CrossRefPubMedGoogle Scholar
  36. 36.
    Grinevich VP, Crooks PA, Sumithran SP, Haubner AJ, Ayers JT, Dwoskin LP (2003) N-n-Alkylpyridinium analogs, a novel class of nicotinic receptor antagonists: selective inhibition of nicotine-evoked [3H] dopamine overflow from superfused rat striatal slices. J Pharmacol Exp Ther 306:1011–1020CrossRefPubMedGoogle Scholar
  37. 37.
    Zumstein A, Karduck W, Starke K (1981) Pathways of dopamine metabolism in the rabbit caudate nucleus in vitro. Naunyn Schmiedebergs Arch Pharmacol 316:205–217CrossRefPubMedGoogle Scholar
  38. 38.
    Janson AM, Meana JJ, Goiny M, Herrera-Marschitz M (1991) Chronic nicotine treatment counteracts the decrease in extracellular neostriatal dopamine induced by a unilateral transection at the mesodiencephalic junction in rats: a microdialysis study. Neurosci Lett 134:88–92CrossRefPubMedGoogle Scholar
  39. 39.
    Grilli M, Parodi M, Raiteri M, Marchi M (2005) Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. J Neurochem 93:1353–1360CrossRefPubMedGoogle Scholar
  40. 40.
    Teng L, Crooks PA, Sonsalla PK, Dwoskin LP (1997) Lobeline and nicotine evoke [3H]overflow from rat striatal slices preloaded with [3H]dopamine: differential inhibition of synaptosomal and vesicular [3H]dopamine uptake. J Pharmacol Exp Ther 280:1432–1444PubMedGoogle Scholar
  41. 41.
    Wilkins LH, Grinevich VP, Ayers JT, Crooks PA, Dwoskin LP (2003) N-n-alkylnicotinium analogs, a novel class of nicotinic receptor antagonists: interaction with alpha4beta2* neuronal nicotinic receptors. J Pharmacol Exp Ther 304:400–410CrossRefPubMedGoogle Scholar
  42. 42.
    Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108CrossRefPubMedGoogle Scholar
  43. 43.
    Azam L, McIntosh JM (2005) Effect of novel alpha-conotoxins on nicotine-stimulated [3H]dopamine release from rat striatal synaptosomes. J Pharmacol Exp Ther 312:231–237CrossRefPubMedGoogle Scholar
  44. 44.
    Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado de Carvalho L, Changeux JP, Corringer PJ (2005) Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron 46:595–607CrossRefPubMedGoogle Scholar
  45. 45.
    Corringer PJ, Sallette J, Changeux JP (2006) Nicotine enhances intracellular nicotinic receptor maturation: A novel mechanism of neural plasticity? J Physiol Paris 99:162–171CrossRefPubMedGoogle Scholar
  46. 46.
    Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, Banghart MR, Dougherty DA, Goate AM, Wang JC (2009) Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS J 11:167–177PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Perez XA, Bordia T, McIntosh JM, Grady SR, Quik M (2008) Long term nicotine treatment differentially regulates striatal α6α4β2* and α6(non-α4)β2* nAChR expression and function. Mol Pharmacol 74:844–853PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Perry DC, Mao D, Gold AB, McIntosh JM, Pezzullo JC, Kellar KJ (2007) Chronic nicotine differentially regulates alpha6- and beta3-containing nicotinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 322:306–315CrossRefPubMedGoogle Scholar
  49. 49.
    Perez XA, O’Leary KT, Parameswaran N, McIntosh JM, Quik M (2009) Prominent role of alpha3/alpha6beta2* nAChRs in regulating evoked dopamine release in primate putamen: effect of long-term nicotine treatment. Mol Pharmacol 75:938–946PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Branch MN (1984) Rate dependency, behavioral mechanisms, and behavioral pharmacology. J Exp Anal Behav 42:511–522PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Joshua S. Beckmann
    • 1
  • Andrew C. Meyer
    • 1
  • M. Pivavarchyk
    • 2
  • David B. Horton
    • 2
  • Guangrong Zheng
    • 3
  • Andrew M. Smith
    • 2
  • Thomas E. Wooters
    • 1
  • J. Michael McIntosh
    • 4
  • Peter A. Crooks
    • 3
  • Michael T. Bardo
    • 1
  • Linda P. Dwoskin
    • 2
  1. 1.Department of PsychologyUniversity of KentuckyLexingtonUSA
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockUSA
  4. 4.George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations