Neurochemical Research

, Volume 40, Issue 12, pp 2544–2556 | Cite as

Critical Evaluation of the Changes in Glutamine Synthetase Activity in Models of Cerebral Stroke

  • Thomas M. Jeitner
  • Kevin Battaile
  • Arthur J. L. Cooper
Original Paper


The following article addresses some seemingly paradoxical observations concerning cerebral glutamine synthetase in ischemia–reperfusion injury. In the brain, this enzyme is predominantly found in astrocytes and catalyzes part of the glutamine-glutamate cycle. Glutamine synthetase is also thought to be especially sensitive to inactivation by the oxygen- and nitrogen-centered radicals generated during strokes. Despite this apparent sensitivity, glutamine synthetase specific activity is elevated in the affected tissues during reperfusion. Given the central role of the glutamine-glutamate cycle in the brain, we sought to resolve these conflicting observations with the view of providing an alternative perspective for therapeutic intervention in stroke.


Brain Glutamine synthetase Ischemia–reperfusion Oxidative stress Stroke 



Electron paramagnetic resonance







Part of the work described in this review was supported by NIH grant DK 16739 (AJLC) and the Theresa Patnode Santmann Foundation (TMJ).


  1. 1.
    Wang Y, Kudoh J, Kubota R, Asakawa S, Minoshima S, Shimizu N (1996) Chromosomal mapping of a family of human glutamine synthetase genes: functional gene (GLUL) on 1q25, pseudogene (GLULP) on 9p13, and three related genes (GLULL1, GLULL2, GLULL3) on 5q33, 11p15, and 11q24. Genomics 37(2):195–199. doi: 10.1006/geno.1996.0542 PubMedCrossRefGoogle Scholar
  2. 2.
    Norenberg MD (1979) Distribution of glutamine synthetase in the rat central nervous system. J Histochem Cytochem 27(3):756–762PubMedCrossRefGoogle Scholar
  3. 3.
    Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61-62C:33–50. doi: 10.1016/j.jchemneu.2014.07.003
  4. 4.
    Boksha IS, Schonfeld HJ, Langen H, Muller F, Tereshkina EB, Burbaeva G (2002) Glutamine synthetase isolated from human brain: octameric structure and homology of partial primary structure with human liver glutamine synthetase. Biochemistry (Mosc) 67(9):1012–1020CrossRefGoogle Scholar
  5. 5.
    Boksha IS, Tereshkina EB, Burbaeva GS (2000) Glutamine synthetase and glutamine synthetase-like protein from human brain: purification and comparative characterization. J Neurochem 75(6):2574–2582Google Scholar
  6. 6.
    Shin D, Park C (2004) N-terminal extension of canine glutamine synthetase created by splicing alters its enzymatic property. J Biol Chem 279(2):1184–1190. doi: 10.1074/jbc.M309940200 PubMedCrossRefGoogle Scholar
  7. 7.
    Shin D, Park S, Park C (2003) A splice variant acquiring an extra transcript leader region decreases the translation of glutamine synthetase gene. Biochem J 374(Pt 1):175–184. doi: 10.1042/BJ20030132 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Krajewski WW, Collins R, Holmberg-Schiavone L, Jones TA, Karlberg T, Mowbray SL (2008) Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design. J Mol Biol 375(1):217–228. doi: 10.1016/j.jmb.2007.10.029 PubMedCrossRefGoogle Scholar
  9. 9.
    Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477(1–2):122–145PubMedCrossRefGoogle Scholar
  10. 10.
    Krajewski WW, Jones TA, Mowbray SL (2005) Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights. Proc Natl Acad Sci USA 102(30):10499–10504. doi: 10.1073/pnas.0502248102 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ (2009) Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. Proteins 76(1):249–254. doi: 10.1002/prot.22403 PubMedCrossRefGoogle Scholar
  12. 12.
    Yanchunas J Jr, Dabrowski MJ, Schurke P, Atkins WM (1994) Supramolecular self-assembly of Escherichia coli glutamine synthetase: characterization of dodecamer stacking and high order association. Biochemistry 33(50):14949–14956PubMedCrossRefGoogle Scholar
  13. 13.
    Schurke P, Freeman JC, Dabrowski MJ, Atkins WM (1999) Metal-dependent self-assembly of protein tubes from Escherichia coli glutamine synthetase. Cu(2+) EPR studies of the ligation and stoichiometry of intermolecular metal binding sites. J Biol Chem 274(39):27963–27968PubMedCrossRefGoogle Scholar
  14. 14.
    Llorca O, Betti M, Gonzalez JM, Valencia A, Marquez AJ, Valpuesta JM (2006) The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Struct Biol 156(3):469–479. doi: 10.1016/j.jsb.2006.06.003 PubMedCrossRefGoogle Scholar
  15. 15.
    Jeitner TM, Cooper AJ (2013) Inhibition of human glutamine synthetase by l-methionine-S, R-sulfoximine-relevance to the treatment of neurological diseases. Metab Brain Dis 29:983–989. doi: 10.1007/s11011-013-9439-6 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Furia TE (1972) Sequestrants in Foods. In: Furia TE (ed) CRC handbook of food additive, 2nd edn. Chemical Rubber Company, Cleveland, OH, pp 271–319Google Scholar
  17. 17.
    Admiraal SJ, Herschlag D (1995) Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Chem Biol 2(11):729–739PubMedCrossRefGoogle Scholar
  18. 18.
    Jeitner TM, Muma NA, Battaile KP, Cooper AJL (2009) Transglutaminase activation in neurodegenerative diseases. Future Neurol 4(4):449–467. doi: 10.2217/fnl.09.17 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Andreotti AH (2003) Native state proline isomerization: an intrinsic molecular switch. Biochemistry 42(32):9515–9524. doi: 10.1021/bi0350710 PubMedCrossRefGoogle Scholar
  20. 20.
    Gill HS, Eisenberg D (2001) The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. Biochemistry 40(7):1903–1912PubMedCrossRefGoogle Scholar
  21. 21.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64:97–112. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrer-Sueta G, Radi R (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4(3):161–177. doi: 10.1021/cb800279q PubMedCrossRefGoogle Scholar
  23. 23.
    Goldstein S, Merenyi G (2008) The chemistry of peroxynitrite: implications for biological activity. Methods Enzymol 436:49–61. doi: 10.1016/S0076-6879(08)36004-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Lymar SV, Hurst JK (1995) Rapid reaction between peroxynitrite ion and carbon dioxide: implications for biological activity. J Am Chem Soc 117:8867–8868CrossRefGoogle Scholar
  25. 25.
    Denicola A, Freeman BA, Trujillo M, Radi R (1996) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333(1):49–58. doi: 10.1006/abbi.1996.0363 PubMedCrossRefGoogle Scholar
  26. 26.
    Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559. doi: 10.1021/ar300234c PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Quijano C, Hernandez-Saavedra D, Castro L, McCord JM, Freeman BA, Radi R (2001) Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. J Biol Chem 276(15):11631–11638. doi: 10.1074/jbc.M009429200 PubMedCrossRefGoogle Scholar
  28. 28.
    Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273(23):14085–14089PubMedCrossRefGoogle Scholar
  29. 29.
    Moreno DM, Marti MA, De Biase PM, Estrin DA, Demicheli V, Radi R, Boechi L (2011) Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Arch Biochem Biophys 507(2):304–309. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  30. 30.
    Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101(12):4003–4008. doi: 10.1073/pnas.0307446101 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    McBean GJ, Doorty KB, Tipton KF, Kollegger H (1995) Alteration in the glial cell metabolism of glutamate by kainate and N-methyl-D-aspartate. Toxicon 33(4):569–576PubMedCrossRefGoogle Scholar
  32. 32.
    Minana MD, Kosenko E, Marcaida G, Hermenegildo C, Montoliu C, Grisolia S, Felipo V (1997) Modulation of glutamine synthesis in cultured astrocytes by nitric oxide. Cell Mol Neurobiol 17(4):433–445PubMedCrossRefGoogle Scholar
  33. 33.
    Schliess F, Gorg B, Fischer R, Desjardins P, Bidmon HJ, Herrmann A, Butterworth RF, Zilles K, Haussinger D (2002) Ammonia induces MK-801-sensitive nitration and phosphorylation of protein tyrosine residues in rat astrocytes. FASEB J 16(7):739–741. doi: 10.1096/fj.01-0862fje PubMedGoogle Scholar
  34. 34.
    Gorg B, Foster N, Reinehr R, Bidmon HJ, Hongen A, Haussinger D, Schliess F (2003) Benzodiazepine-induced protein tyrosine nitration in rat astrocytes. Hepatology 37(2):334–342. doi: 10.1053/jhep.2003.50061 PubMedCrossRefGoogle Scholar
  35. 35.
    Kosenko E, Llansola M, Montoliu C, Monfort P, Rodrigo R, Hernandez-Viadel M, Erceg S, Sanchez-Perez AM, Felipo V (2003) Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochem Int 43(4–5):493–499PubMedCrossRefGoogle Scholar
  36. 36.
    Gorg B, Wettstein M, Metzger S, Schliess F, Haussinger D (2005) Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat. Hepatology 41(5):1065–1073. doi: 10.1002/hep.20662 PubMedCrossRefGoogle Scholar
  37. 37.
    Gorg B, Wettstein M, Metzger S, Schliess F, Haussinger D (2005) LPS-induced tyrosine nitration of hepatic glutamine synthetase. Hepatology 42(2):499. doi: 10.1002/hep.20820 PubMedCrossRefGoogle Scholar
  38. 38.
    Fernandez-Cancio M, Fernandez-Vitos EM, Imperial S, Centelles JJ (2001) Structural requirements of benzodiazepines for the inhibition of pig brain nitric oxide synthase. Brain Res Mol Brain Res 96(1–2):87–93PubMedCrossRefGoogle Scholar
  39. 39.
    Gorg B, Qvartskhava N, Voss P, Grune T, Haussinger D, Schliess F (2007) Reversible inhibition of mammalian glutamine synthetase by tyrosine nitration. FEBS Lett 581(1):84–90. doi: 10.1016/j.febslet.2006.11.081 PubMedCrossRefGoogle Scholar
  40. 40.
    Buchczyk DP, Grune T, Sies H, Klotz LO (2003) Modifications of glyceraldehyde-3-phosphate dehydrogenase induced by increasing concentrations of peroxynitrite: early recognition by 20S proteasome. Biol Chem 384(2):237–241. doi: 10.1515/BC.2003.026 PubMedCrossRefGoogle Scholar
  41. 41.
    Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S, Lee KJ (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 423(2):253–264. doi: 10.1042/BJ20090854 PubMedCrossRefGoogle Scholar
  42. 42.
    Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci USA 95(20):11584–11589PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 100(10):5634–5639. doi: 10.1073/pnas.1131756100 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Smallwood HS, Lourette NM, Boschek CB, Bigelow DJ, Smith RD, Pasa-Tolic L, Squier TC (2007) Identification of a denitrase activity against calmodulin in activated macrophages using high-field liquid chromatography—FTICR mass spectrometry. Biochemistry 46(37):10498–10505. doi: 10.1021/bi7009713 PubMedCrossRefGoogle Scholar
  45. 45.
    Ill-Raga G, Ramos-Fernandez E, Guix FX, Tajes M, Bosch-Morato M, Palomer E, Godoy J, Belmar S, Cerpa W, Simpkins JW, Inestrosa Nc, Munoz FJ (2010) Amyloid-beta peptide fibrils induce nitro-oxidative stress in neuronal cells. J Alzheimers Dis 22(2):641–652. doi: 10.3233/JAD-2010-100474 PubMedGoogle Scholar
  46. 46.
    Osoata GO, Ito M, Elliot M, Hogg J, Barnes PJ, Ito K (2012) Reduced denitration activity in peripheral lung of chronic obstructive pulmonary disease. Tanaffos 11(4):23–29PubMedCentralPubMedGoogle Scholar
  47. 47.
    Deeb RS, Nuriel T, Cheung C, Summers B, Lamon BD, Gross SS, Hajjar DP (2013) Characterization of a cellular denitrase activity that reverses nitration of cyclooxygenase. Am J Physiol Heart Circ Physiol 305(5):H687–H698. doi: 10.1152/ajpheart.00876.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE (2011) Inactivation and reactivation of the mitochondrial alpha-ketoglutarate dehydrogenase complex. J Biol Chem 286(20):17640–17648. doi: 10.1074/jbc.M110.203018 PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Butterfield DA, Reed TT, Perluigi M, De Marco C, Coccia R, Keller JN, Markesbery WR, Sultana R (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248. doi: 10.1016/j.brainres.2007.02.084 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Cenini G, Sultana R, Memo M, Butterfield DA (2008) Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Rad Biol Med 45(1):81–85. doi: 10.1016/j.freeradbiomed.2008.03.015 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, Binder LI (2008) A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol Dis 31(2):198–208. doi: 10.1016/j.nbd.2008.04.005 PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 45(8):836–840PubMedCrossRefGoogle Scholar
  53. 53.
    Sahakian JA, Szweda LI, Friguet B, Kitani K, Levine RL (1995) Aging of the liver: proteolysis of oxidatively modified glutamine synthetase. Arch Biochem Biophys 318(2):411–417. doi: 10.1006/abbi.1995.1248 PubMedCrossRefGoogle Scholar
  54. 54.
    Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, Obin M, Ara J, Horwitz J, Ischiropoulos H (2000) Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys 380(2):360–366. doi: 10.1006/abbi.2000.1940 PubMedCrossRefGoogle Scholar
  55. 55.
    Fucci L, Oliver CN, Coon MJ, Stadtman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci USA 80(6):1521–1525PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Fernandes SP, Dringen R, Lawen A, Robinson SR (2011) Inactivation of astrocytic glutamine synthetase by hydrogen peroxide requires iron. Neuro Lett 490(1):27–30. doi: 10.1016/j.neulet.2010.12.019 CrossRefGoogle Scholar
  57. 57.
    Farber JM, Levine RL (1986) Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase. J Biol Chem 261(10):4574–4578PubMedGoogle Scholar
  58. 58.
    Climent I, Levine RL (1991) Oxidation of the active site of glutamine synthetase: conversion of arginine-344 to gamma-glutamyl semialdehyde. Arch Biochem Biophys 289(2):371–375PubMedCrossRefGoogle Scholar
  59. 59.
    Liaw SH, Villafranca JJ, Eisenberg D (1993) A model for oxidative modification of glutamine synthetase, based on crystal structures of mutant H269N and the oxidized enzyme. Biochemistry 32(31):7999–8003PubMedCrossRefGoogle Scholar
  60. 60.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43(5):1369–1374PubMedCrossRefGoogle Scholar
  61. 61.
    Kanthan R, Shuaib A, Griebel R, Miyashita H (1995) Intracerebral human microdialysis. In vivo study of an acute focal ischemic model of the human brain. Stroke 26(5):870–873PubMedCrossRefGoogle Scholar
  62. 62.
    Yudkoff M, Zaleska MM, Nissim I, Nelson D, Erecinska M (1989) Neuronal glutamine utilization: pathways of nitrogen transfer studied with [15N]glutamine. J Neurochem 53(2):632–640PubMedCrossRefGoogle Scholar
  63. 63.
    Krajnc D, Neff NH, Hadjiconstantinou M (1996) Glutamate, glutamine and glutamine synthetase in the neonatal rat brain following hypoxia. Brain Res 707(1):134–137PubMedCrossRefGoogle Scholar
  64. 64.
    Swamy M, Salleh MJ, Sirajudeen KN, Yusof WR, Chandran G (2010) Nitric oxide (no), citrulline - no cycle enzymes, glutamine synthetase and oxidative stress in anoxia (hypobaric hypoxia) and reperfusion in rat brain. Int J Med Sci 7(3):147–154PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Groenendaal F, Shadid M, McGowan JE, Mishra OP, van Bel F (2000) Effects of deferoxamine, a chelator of free iron, on NA(+), K(+)-ATPase activity of cortical brain cell membrane during early reperfusion after hypoxia-ischemia in newborn lambs. Pediatr Res 48(4):560–564. doi: 10.1203/00006450-200010000-00023 PubMedCrossRefGoogle Scholar
  66. 66.
    Peeters-Scholte C, Braun K, Koster J, Kops N, Blomgren K, Buonocore G, van Buul-Offers S, Hagberg H, Nicolay K, van Bel F, Groenendaal F (2003) Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res 54(4):516–522. doi: 10.1203/01.PDR.0000081297.53793.C6 PubMedCrossRefGoogle Scholar
  67. 67.
    Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R (1999) Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharm 57(2):199–208PubMedCrossRefGoogle Scholar
  68. 68.
    Kumura E, Yoshimine T, Iwatsuki KI, Yamanaka K, Tanaka S, Hayakawa T, Shiga T, Kosaka H (1996) Generation of nitric oxide and superoxide during reperfusion after focal cerebral ischemia in rats. Am J Physiol 270(3 Pt 1):C748–C752PubMedGoogle Scholar
  69. 69.
    Antunes F, Boveris A, Cadenas E (2004) On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proc Natl Acad Sci USA 101(48):16774–16779. doi: 10.1073/pnas.0405368101 PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Peinado MA, Hernandez R, Peragon J, Ovelleiro D, Pedrosa JA, Blanco S (2014) Proteomic characterization of nitrated cell targets after hypobaric hypoxia and reoxygenation in rat brain. J Proteomics 109C:309–321. doi: 10.1016/j.jprot.2014.07.015 CrossRefGoogle Scholar
  71. 71.
    Sen S, Phillis JW (1993) alpha-Phenyl-tert-butyl-nitrone (PBN) attenuates hydroxyl radical production during ischemia-reperfusion injury of rat brain: an EPR study. Free Rad Res Comm 19(4):255–265CrossRefGoogle Scholar
  72. 72.
    Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280PubMedCrossRefGoogle Scholar
  73. 73.
    Akinmoladun AC, Akinrinola BL, Olaleye MT, Farombi EO (2015) Kolaviron, a Garcinia kola Biflavonoid complex, protects against ischemia/reperfusion injury: pertinent mechanistic insights from biochemical and physical evaluations in rat brain. Neurochem Res 40(4):777–787. doi: 10.1007/s11064-015-1527-z PubMedCrossRefGoogle Scholar
  74. 74.
    Lee DR, Helps SC, Gibbins IL, Nilsson M, Sims NR (2003) Losses of NG2 and NeuN immunoreactivity but not astrocytic markers during early reperfusion following severe focal cerebral ischemia. Brain Res 989(2):221–230PubMedCrossRefGoogle Scholar
  75. 75.
    Babu CS, Ramanathan M (2009) Pre-ischemic treatment with memantine reversed the neurochemical and behavioural parameters but not energy metabolites in middle cerebral artery occluded rats. Pharmacol Biochem Behav 92(3):424–432. doi: 10.1016/j.pbb.2009.01.010 PubMedCrossRefGoogle Scholar
  76. 76.
    Folbergrova J, Kiyota Y, Pahlmark K, Memezawa H, Smith ML, Siesjo BK (1993) Does ischemia with reperfusion lead to oxidative damage to proteins in the brain? J Cereb Blood Flow Metab 13(1):145–152. doi: 10.1038/jcbfm.1993.17 PubMedCrossRefGoogle Scholar
  77. 77.
    Verma R, Mishra V, Sasmal D, Raghubir R (2010) Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 638(1–3):65–71. doi: 10.1016/j.ejphar.2010.04.021 PubMedCrossRefGoogle Scholar
  78. 78.
    Babu CS, Ramanathan M (2011) Post-ischemic administration of nimodipine following focal cerebral ischemic-reperfusion injury in rats alleviated excitotoxicity, neurobehavioural alterations and partially the bioenergetics. Int J Dev Neurosci 29(1):93–105. doi: 10.1016/j.ijdevneu.2010.08.001 PubMedCrossRefGoogle Scholar
  79. 79.
    Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Priya RJ, Pramila B, Paul FD, Venkhatesh J, Babu CS (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 84(6):394–405. doi: 10.1016/j.brainresbull.2011.01.008 PubMedCrossRefGoogle Scholar
  80. 80.
    Hansel G, Ramos DB, Delgado CA, Souza DG, Almeida RF, Portela LV, Quincozes-Santos A, Souza DO (2014) The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS ONE 9(2):e90693. doi: 10.1371/journal.pone.0090693 PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87(13):5144–5147PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Lee A, Lingwood BE, Bjorkman ST, Miller SM, Poronnik P, Barnett NL, Colditz P, Pow DV (2010) Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: implications for excitotoxicity. J Chem Neuroanat 39(3):211–220. doi: 10.1016/j.jchemneu.2009.12.002 PubMedCrossRefGoogle Scholar
  83. 83.
    Du C, Koretsky AP, Izrailtyan I, Benveniste H (2005) Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence. J Cereb Blood Flow Metab 25(8):1078–1092. doi: 10.1038/sj.jcbfm.9600102 PubMedCrossRefGoogle Scholar
  84. 84.
    Uematsu D, Greenberg JH, Reivich M, Karp A (1988) In vivo measurement of cytosolic free calcium during cerebral ischemia and reperfusion. Ann Neurol 24(3):420–428. doi: 10.1002/ana.410240311 PubMedCrossRefGoogle Scholar
  85. 85.
    Frade JG, Barbosa RM, Laranjinha J (2009) Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices. Hippocampus 19(7):603–611. doi: 10.1002/hipo.20536 PubMedCrossRefGoogle Scholar
  86. 86.
    Mitani A, Namba S, Ikemune K, Yanase H, Arai T, Kataoka K (1998) Postischemic enhancements of N-methyl-d-aspartic acid (NMDA) and non-NMDA receptor-mediated responses in hippocampal CA1 pyramidal neurons. J Cereb Blood Flow Metab 18(10):1088–1098. doi: 10.1097/00004647-199810000-00005 PubMedCrossRefGoogle Scholar
  87. 87.
    Ikemune K, Mitani A, Namba S, Kataoka K, Arai T (1999) Functional changes of N-methyl-d-aspartic acid and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate channels in gerbil hippocampal CA1, in relation to postischemic enhancement of glutamate receptor-mediated responses. Neurosci Lett 275(2):125–128PubMedCrossRefGoogle Scholar
  88. 88.
    Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30(8):1412–1431. doi: 10.1038/jcbfm.2010.66 PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Dao DN, Ahdab-Barmada M, Schor NF (1991) Cerebellar glutamine synthetase in children after hypoxia or ischemia. Stroke 22(10):1312–1316PubMedCrossRefGoogle Scholar
  90. 90.
    Patel AJ, Hunt A, Faraji-Shadan F (1986) Effect of removal of glutamine and addition of dexamethasone on the activities of glutamine synthetase, ornithine decarboxylase and lactate dehydrogenase in primary cultures of forebrain and cerebellar astrocytes. Brain Res 391(2):229–238PubMedCrossRefGoogle Scholar
  91. 91.
    Laping NJ, Nichols NR, Day JR, Johnson SA, Finch CE (1994) Transcriptional control of glial fibrillary acidic protein and glutamine synthetase in vivo shows opposite responses to corticosterone in the hippocampus. Endocrinology 135(5):1928–1933. doi: 10.1210/endo.135.5.7956913 PubMedGoogle Scholar
  92. 92.
    Jackson MJ, Zielke HR, Max SR (1995) Effect of dibutyryl cyclic AMP and dexamethasone on glutamine synthetase gene expression in rat astrocytes in culture. Neurochem Res 20(2):201–207PubMedCrossRefGoogle Scholar
  93. 93.
    Hsueh CM, Kuo JS, Chen SF (2003) Ischemia/reperfusion-induced changes of hypothalamic-pituitary-adrenal (HPA) activity is opioid related in Sprague-Dawley rat. Neurosci Lett 349(3):155–158PubMedCrossRefGoogle Scholar
  94. 94.
    Radak D, Resanovic I, Isenovic ER (2014) Changes in hypothalamus-pituitary-adrenal axis following transient ischemic attack. Angiology 65(8):723–732. doi: 10.1177/0003319713503487 PubMedCrossRefGoogle Scholar
  95. 95.
    Lin CK, Dunn A (1989) Hypophysectomy decreases and growth hormone increases the turnover and mass of rat liver glutamine synthetase. Life Sci 45(25):2443–2450PubMedCrossRefGoogle Scholar
  96. 96.
    Lima L, Seabra A, Melo P, Cullimore J, Carvalho H (2006) Post-translational regulation of cytosolic glutamine synthetase of Medicago truncatula. J Exp Bot 57(11):2751–2761. doi: 10.1093/jxb/erl036 PubMedCrossRefGoogle Scholar
  97. 97.
    Khelil M, Rolland B, Fages C, Tardy M (1990) Glutamine synthetase modulation in astrocyte cultures of different mouse brain areas. Glia 3(1):75–80. doi: 10.1002/glia.440030110 PubMedCrossRefGoogle Scholar
  98. 98.
    Levine RL (1989) Proteolysis induced by metal-catalyzed oxidation. Revis Biol Celular 21:347–360PubMedGoogle Scholar
  99. 99.
    Starke-Reed PE, Oliver CN (1989) Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 275(2):559–567PubMedCrossRefGoogle Scholar
  100. 100.
    Bame M, Grier RE, Needleman R, Brusilow WS (2014) Amino acids as biomarkers in the SOD1(G93A) mouse model of ALS. Biochim Biophys Acta 1842(1):79–87. doi: 10.1016/j.bbadis.2013.10.004 PubMedCrossRefGoogle Scholar
  101. 101.
    Bame M, Pentiak PA, Needleman R, Brusilow WS (2012) Effect of sex on lifespan, disease progression, and the response to methionine sulfoximine in the SOD1 G93A mouse model for ALS. Gend Med 9(6):524–535. doi: 10.1016/j.genm.2012.10.014 PubMedCrossRefGoogle Scholar
  102. 102.
    Ghoddoussi F, Galloway MP, Jambekar A, Bame M, Needleman R, Brusilow WS (2010) Methionine sulfoximine, an inhibitor of glutamine synthetase, lowers brain glutamine and glutamate in a mouse model of ALS. J Neurol Sci 290(1–2):41–47. doi: 10.1016/j.jns.2009.11.013 PubMedCrossRefGoogle Scholar
  103. 103.
    Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ (2010) Astrocyte glutamine synthetase: importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 7(4):452–470. doi: 10.1016/j.nurt.2010.05.015 PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Cooper AJ (2013) Possible treatment of end-stage hyperammonemic encephalopathy by inhibition of glutamine synthetase. Met Brain Dis 28(2):119–125. doi: 10.1007/s11011-012-9338-2 CrossRefGoogle Scholar
  105. 105.
    McNicholas S, Potterton E, Wilson KS, Noble ME (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(Pt 4):386–394. doi: 10.1107/S0907444911007281 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Thomas M. Jeitner
    • 1
  • Kevin Battaile
    • 2
  • Arthur J. L. Cooper
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyNew York Medical CollegeValhallaUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations