Advertisement

Neurochemical Research

, Volume 41, Issue 3, pp 523–533 | Cite as

Chronic Brain Inflammation: The Neurochemical Basis for Drugs to Reduce Inflammation

  • Bevyn JarrottEmail author
  • Spencer J. Williams
Original Paper

Abstract

It is now recognised that the brain and the peripheral immune system have bidirectional communication in both health and neuronal diseases. Brain inflammation results after both acute injury and also with the appearance of mutated proteins or endogenous neurotoxic metabolites associated with slow neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases and some psychiatric disorders. Microglia play a key role in brain inflammation by the release of pro-inflammatory cytokines and with ageing, microglia exhibit ‘priming’ leading to increased basal release of the pro-inflammatory cytokines. Neurochemical targets to reduce or slow chronic brain inflammation include cyclooxygenase enzymes, Nrf2 transcription factor, angiotensin AT1 receptors and sigma-1 receptors. Development of more selective drugs to act at these targets is occurring but large scale clinical trials to validate the drugs will take significant time.

Keywords

Brain inflammation Chronic neurodegenerative diseases Microglia Cytokines Cyclooxygenase inhibitors Angiotensin AT1 receptor antagonists Sigma-1 receptors 

Notes

Acknowledgments

BJ is pleased to contribute a paper to this special issue honouring Philip Beart who has been a collaborator and friend for 38 years. May Phil’s lifelong attention to physical and mental exercises, healthy eating and sensible ingestion of red wine with family and friends keep chronic brain inflammation away.

References

  1. 1.
    Meinl E, Wekerle H (2010) Effectors and determinants of the innate and adaptive immune responses. In: Kilpatrick T, Ransohoff RM, Wesselingh S (eds) Inflammatory diseases of the central nervous system. Cambridge University Press, Cambridge, pp 1–14Google Scholar
  2. 2.
    Zhou Y, Wang Y, Wang J, Stetler RA, Yang QW (2014) Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 115:25–44CrossRefPubMedGoogle Scholar
  3. 3.
    Man S, Ubogu EE, Ransohoff RM (2007) Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol 17:243–250CrossRefPubMedGoogle Scholar
  4. 4.
    Jarrott B, Aprico K (2010) Microglia: protective and pathogenic mediators. In: Kilpatrick T, Ransohoff RM, Wesselingh S (eds) Inflammatory diseases of the central nervous system. Cambridge University Press, Cambridge, pp 15–26Google Scholar
  5. 5.
    Antony JM, Power C (2010) Neuro-inflammation: an emerging therapeutic therapeutic target in neurological disease. In: Kilpatrick T, Ransohoff RM, Wesselingh S (eds) Inflammatory diseases of the central nervous system. Cambridge University Press, Cambridge, pp 245–256Google Scholar
  6. 6.
    Pizza V, Agresta A, D’Acunto CW, Festa M, Capasso A (2011) Neuroimmflamm-aging and neurodegenerative diseases: an overview. CNS Neurol Disord Drug Targets 10:621–634CrossRefPubMedGoogle Scholar
  7. 7.
    Fung A, Vizcaychipi M, Lloyd D, Wan Y, Ma D (2012) Central nervous system inflammation in disease related conditions: mechanistic prospects. Brain Res 1446:144–155CrossRefPubMedGoogle Scholar
  8. 8.
    Waki H, Gouraud SS, Maeda M, Raizada MK, Paton JFR (2011) Contributions of vascular inflammation in the brainstem for neurogenic hypertension. Res Physiol Neurobiol 178:422–428CrossRefGoogle Scholar
  9. 9.
    Marvar PJ, Lob H, Vinh A, Zarreen F, Harrison DG (2011) The central nervous system and inflammation in hypertension. Curr Opin Pharmacol 11:156–161CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rosano C, Marsland AL, Gianaros PJ (2012) Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging. Aging Dis 3:16–33PubMedPubMedCentralGoogle Scholar
  11. 11.
    DeKosky ST, Marck K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302:830–834CrossRefPubMedGoogle Scholar
  12. 12.
    Fisher M, Ratan R (2003) New perspectives on developing acute stroke therapy. Ann Neurol 53:10–20CrossRefPubMedGoogle Scholar
  13. 13.
    Young A, Ali C, Duretete A, Vivien D (2007) Neuroprotection and stroke: time for a compromise. J Neurochem 103:1302–1309CrossRefPubMedGoogle Scholar
  14. 14.
    Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405CrossRefPubMedGoogle Scholar
  15. 15.
    Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397CrossRefPubMedGoogle Scholar
  16. 16.
    Calne DB (1992) The free radical hypothesis in idiopathic parkinsonism: evidence against it. Ann Neurol 32:799–803CrossRefPubMedGoogle Scholar
  17. 17.
    Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36:356–361CrossRefPubMedGoogle Scholar
  18. 18.
    Chen H, Jacobs E, Schwarzschild MA, McCulloch ML, Calle EE, Thun MJ et al (2005) Nonsteroidal anti-inflammatory drugs and the risk for Parkinson's disease. Ann Neurol 58:963–967CrossRefPubMedGoogle Scholar
  19. 19.
    Schiess M (2003) Nonsteroidal anti-inflammatory drugs protect against Parkinson neuro-degeneration. Arch Neurol 60:1043–1044CrossRefPubMedGoogle Scholar
  20. 20.
    Meyer U, Schwarz MJ, Muller N (2011) Inflammatory processes in schizophrenia: a promising neuroimmunologial target for the treatment of negative/cognitive symptoms and beyond. Pharmacol Ther 132:96–110CrossRefPubMedGoogle Scholar
  21. 21.
    Berk M, Dean O, Drexhage H, McNeill JJ, Moylan S, O’Neil A et al (2013) Aspirin: a review of its neurobiological properties and therapeutic potential for mental illness. BMC Med 11:74CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zahr NM (2014) Structural and microstructural imaging of the brain in alcohol use disorders. Handb Clin Neurol 125:275–290CrossRefPubMedGoogle Scholar
  23. 23.
    Barrientos RM, Kitt MM, Watkins LR, Maier SF (2015) Neuroinflammation in the normal aging hippocampus. Neuroscience. doi: 10.1016/j.neuroscience.2015.03.007
  24. 24.
    Floyd RA (1999) Neuroinflammatory processes are important in the neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26:1346–1355CrossRefPubMedGoogle Scholar
  25. 25.
    Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW et al (2011) Fractaline and CX3CR1 regulate hippocampal meurogenesis in adult and aged rats. Neurobiol Aging 32:2030–2044CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282:C227–C241CrossRefPubMedGoogle Scholar
  27. 27.
    Fisher M, Lees K, Papadakis M, Buchan AM (2006) NXY-059: brain or vessel protection. Stroke 37:2189–2190CrossRefPubMedGoogle Scholar
  28. 28.
    Marnett LJ (2009) The COXIB experience: a look in the rearview mirror. Annu Rev Pharmacol Toxicol 49:265–290CrossRefPubMedGoogle Scholar
  29. 29.
    Choi SH, Aid S, Caracciolo L, Minami SS, Niikura T, Matsuoka Y et al (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sui Y, Stanic D, Tomas D, Jarrott B, Horne MK (2009) Meloxicam reduces lipopolysaccharide-induced degeneration of dopaminergic neurons in the rat substantia nigra pars compacta. Neurosci Lett 460:121–125CrossRefPubMedGoogle Scholar
  31. 31.
    Duffy S, So A, Murphy TH (1998) Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J Neurochem 71:69–77CrossRefPubMedGoogle Scholar
  32. 32.
    Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2014) Nrf2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306CrossRefPubMedGoogle Scholar
  33. 33.
    Jia Z, Zhu H, Misra HP, Li Y (2008) Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons. Brain Res 1197:159–169CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. J Biol Chem 278:8135–8145CrossRefPubMedGoogle Scholar
  35. 35.
    Charlier C, Michaux C (2003) Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem 38:645–659CrossRefPubMedGoogle Scholar
  36. 36.
    Zanatta SD, Manallack DT, Jarrott B, Williams SJ (2009) Synthesis and evaluation of dithiolethiones as novel cyclooxygenase inhibitors. Bioorg Med Chem Lett 19:459–461CrossRefPubMedGoogle Scholar
  37. 37.
    Zanatta SD, Jarrott B, Williams SJ (2010) Synthesis and preliminary pharmacological evaluation of aryl dithiolethiones with cyclooxygenase-2-selective inhibitory activity and hydrogen sulphide-releasing properties. Aust J Chem 63:946–957CrossRefGoogle Scholar
  38. 38.
    Wallace JL (2007) Hydrogen sulphide-releasing anti-inflammatory drugs. Trends Pharmacol Sci 28:501–505CrossRefPubMedGoogle Scholar
  39. 39.
    Wallace JL, Blackler RW, Chan MV, Da Silva GJ, Elsheikh W, Flannigan KL et al (2014) Anti-inflammatory and cytoprotective actions of hydrogen sulphide: translation to therapeutics. Antioxid Redox Signal 22:398–410CrossRefPubMedGoogle Scholar
  40. 40.
    Wager TT, Hou X, Verhoest PR, Villalobos A (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1:435–449CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Skrbic R, Igic R (2009) Seven decades of angiotensin (1939–2009). Peptides 30:1945–1950CrossRefPubMedGoogle Scholar
  42. 42.
    Bader M (2010) Tissue rennin-angiotensin-aldosterone systems: targets for pharmacological therapy. Annu Rev Pharmacol Toxicol 50:439–465CrossRefPubMedGoogle Scholar
  43. 43.
    McKinley MJ, Albiston AL, Allen AM, Mathai ML, May C, McAllen RM et al (2003) The brain rennin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35:901–918CrossRefPubMedGoogle Scholar
  44. 44.
    Saavedra JM, Sanchez-Lemus E, Benicky J (2011) Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: therapeutic implications. Psychoneuroendocrinology 36:1–18CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Saavedra JM (2012) Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clin Sci (Lond) 123:567–590CrossRefGoogle Scholar
  46. 46.
    Villapol S, Saavedra JM (2015) Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 28:289–299CrossRefPubMedGoogle Scholar
  47. 47.
    Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E et al (1996) Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci USA 93:8072–8077CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Hayashi T, Su TP (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signalling and cell survival. Cell 131:596–610CrossRefPubMedGoogle Scholar
  49. 49.
    Kourrich S, Su TP, Fujimoto M, Bonci A (2012) The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 35:762–771CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mishra AK, Mavlyutov T, Singh DR, Biener G, Yang J, Oliver JA et al (2015) The sigma-1 receptors are present in monomeric and oligomeric forms in living cells in the presence and absence of ligands. Biochem J 466:263–271CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wunder A, Klohs J, Dirnagl U (2009) Non-invasive visualization of CNS inflammation with nuclear and optical imaging. Neuroscience 158:1161–1173CrossRefPubMedGoogle Scholar
  52. 52.
    Drake C, Boutin H, Jones MS, Denes A, McColl BW, Selvarajah JR et al (2011) Brain inflammation is induced by co-morbidities and risk factors for stroke. Brain Behav Immun 25:1113–1122CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, Chalon S et al (2008) DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med 49:814–822CrossRefPubMedGoogle Scholar
  54. 54.
    Harhausen D, Sudmann V, Khojasteh U, Muller J, Zille M, Graham K et al (2013) Specific imaging of inflammation with the 18 kDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS ONE 8:e69529CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Florey Institute of Neuroscience and Mental HealthThe University of MelbourneVictoriaAustralia
  2. 2.Bio 21 Institute and School of ChemistryThe University of MelbourneVictoriaAustralia

Personalised recommendations