Advertisement

Neurochemical Research

, Volume 40, Issue 12, pp 2493–2504 | Cite as

Monoaminergic Control of Cellular Glucose Utilization by Glycogenolysis in Neocortex and Hippocampus

  • Mauro DiNuzzo
  • Federico Giove
  • Bruno Maraviglia
  • Silvia Mangia
Original Paper

Abstract

Brainstem nuclei are the principal sites of monoamine (MA) innervation to major forebrain structures. In the cortical grey matter, increased secretion of MA neuromodulators occurs in response to a wealth of environmental and homeostatic challenges, whose onset is associated with rapid, preparatory changes in neural activity as well as with increases in energy metabolism. Blood-borne glucose is the main substrate for energy production in the brain. Once entered the tissue, interstitial glucose is equally accessible to neurons and astrocytes, the two cell types accounting for most of cellular volume and energy metabolism in neocortex and hippocampus. Astrocytes also store substantial amounts of glycogen, but non-stimulated glycogen turnover is very small. The rate of cellular glucose utilization in the brain is largely determined by hexokinase, which under basal conditions is more than 90 % inhibited by its product glucose-6-phosphate (Glc-6-P). During rapid increases in energy demand, glycogen is a primary candidate in modulating the intracellular level of Glc-6-P, which can occur only in astrocytes. Glycogenolysis can produce Glc-6-P at a rate higher than uptake and phosphorylation of glucose. MA neurotransmitter are released extrasinaptically by brainstem neurons projecting to neocortex and hippocampus, thus activating MA receptors located on both neuronal and astrocytic plasma membrane. Importantly, MAs are glycogenolytic agents and thus they are exquisitely suitable for regulation of astrocytic Glc-6-P concentration, upstream substrate flow through hexokinase and hence cellular glucose uptake. Conforming to such mechanism, Gerald A. Dienel and Nancy F. Cruz recently suggested that activation of noradrenergic locus coeruleus might reversibly block astrocytic glucose uptake by stimulating glycogenolysis in these cells, thereby anticipating the rise in glucose need by active neurons. In this paper, we further develop the idea that the whole monoaminergic system modulates both function and metabolism of forebrain regions in a manner mediated by glycogen mobilization in astrocytes.

Keywords

Astrocytes Glycogen Glucose Monoamines 

Abbreviations

5-HT

5-Hydroxytryptamine (serotonin)

AK

Adenylate kinase

CK

Creatine kinase

DA

Dopamine

Glc-6-P

Glucose 6-phosphate

GLUT

Glucose transporter

GP

Glycogen phosphorylase

HA

Histamine

HK

Hexokinase

LC

Locus coeruleus

MA

Monoamine

NE

Norepinephrine (noradrenaline)

NKA

Na+/K+-activated adenosine triphosphatase

RN

Raphe nucleus

TCA

Tricarboxylic acid

TMN

Tuberomammillary nucleus

VTA

Ventral tegmental area

Notes

Acknowledgments

The author S. M. thanks the Grant NIH 1R01DK099137 from the National Institute of Health (NIH) for support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Siesjo DP (1978) Brain energy metabolism. Wiley, New YorkGoogle Scholar
  2. 2.
    Shulman RG, Hyder F, Rothman DL (2014) Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain’s support of behavior. J Cereb Blood Flow Metab 34(11):1721–1735PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Grosche A, Grosche J, Tackenberg M, Scheller D, Gerstner G, Gumprecht A, Pannicke T, Hirrlinger PG, Wilhelmsson U, Huttmann K, Hartig W, Steinhauser C, Pekny M, Reichenbach A (2013) Versatile and simple approach to determine astrocyte territories in mouse neocortex and hippocampus. PLoS ONE 8:e69143PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103PubMedCrossRefGoogle Scholar
  5. 5.
    Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27:1766–1791PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Nehlig A, Wittendorp-Rechenmann E, Lam CD (2004) Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab 24:1004–1014PubMedCrossRefGoogle Scholar
  8. 8.
    Patel AB, Lai JC, Chowdhury GM, Hyder F, Rothman DL, Shulman RG, Behar KL (2014) Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc Natl Acad Sci USA 111:5385–5390PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Mangia S, Simpson IA, Vannucci SJ, Carruthers A (2009) The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem 109(Suppl 1):55–62PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    DiNuzzo M, Giove F, Maraviglia B, Mangia S (2013) Glucose metabolism down-regulates the uptake of 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (6-NBDG) mediated by glucose transporter 1 isoform (GLUT1): theory and simulations using the symmetric four-state carrier model. J Neurochem 125(2):236–246PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ (2011) Response to ‘comment on recent modeling studies of astrocyte-neuron metabolic interactions’: much ado about nothing. J Cereb Blood Flow Metab 31:1346–1353PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249PubMedCrossRefGoogle Scholar
  13. 13.
    McKenna MC, Dienel GA, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Energy metabolism of the brain. In: Brady ST, Siegel GJ, Albers RW, Price DL (eds) Basic neurochemistry principles of molecular, cellular, and medical neurobiology, 8th edn. Academic Press, Elsevier, Waltham, MA, pp 200–231Google Scholar
  14. 14.
    DiNuzzo M, Mangia S, Maraviglia B, Giove F (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37:2432–2438PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem 281:37361–37371PubMedCrossRefGoogle Scholar
  16. 16.
    SDA-ilva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, de Felice FG, de Meis L, Oliveira MF, Galina A (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279:39846–39855CrossRefGoogle Scholar
  17. 17.
    Craven PA, Basford RE (1974) ADP-induced binding of phosphofructokinase to the brain mitochondrial membrane. Biochim Biophys Acta 354:49–56PubMedCrossRefGoogle Scholar
  18. 18.
    Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20:144–160PubMedCrossRefGoogle Scholar
  20. 20.
    Lowe MT, Kim EH, Faull RL, Christie DL, Waldvogel HJ (2013) Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab 33:1295–1306PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dienel GA, Cruz NF (2006) Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem Int 48:586–595PubMedCrossRefGoogle Scholar
  22. 22.
    Subbarao KV, Stolzenburg JU, Hertz L (1995) Pharmacological characteristics of potassium-induced, glycogenolysis in astrocytes. Neurosci Lett 196:45–48PubMedCrossRefGoogle Scholar
  23. 23.
    DiNuzzo M, Mangia S, Maraviglia B, Giove F (2013) Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem Int 63:458–464PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    DiNuzzo M, Maraviglia B, Giove F (2011) Why does the brain (not) have glycogen? BioEssays 33:319–326PubMedCrossRefGoogle Scholar
  25. 25.
    Hertz L, Dienel GA (2002) Energy metabolism in the brain. Int Rev Neurobiol 51:1–102PubMedCrossRefGoogle Scholar
  26. 26.
    DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Verge V, Hevor TK (1995) Regulation of fructose-1,6-bisphosphatase activity in primary cultured astrocytes. Neurochem Res 20:1049–1056PubMedCrossRefGoogle Scholar
  28. 28.
    Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRefGoogle Scholar
  29. 29.
    LeDoux J (2012) Rethinking the emotional brain. Neuron 73:653–676PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Changizi MA, Hsieh A, Nijhawan R, Kanai R, Shimojo S (2008) Perceiving the present and a systematization of illusions. Cogn Sci 32:459–503PubMedCrossRefGoogle Scholar
  31. 31.
    Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36:181–204PubMedCrossRefGoogle Scholar
  32. 32.
    Barnes JJ, O’Connell RG, Nandam LS, Dean AJ, Bellgrove MA (2014) Monoaminergic modulation of behavioural and electrophysiological indices of error processing. Psychopharmacology (Berl) 231:379–392CrossRefGoogle Scholar
  33. 33.
    Hester R, Nandam LS, O’Connell RG, Wagner J, Strudwick M, Nathan PJ, Mattingley JB, Bellgrove MA (2012) Neurochemical enhancement of conscious error awareness. J Neurosci 32:2619–2627PubMedCrossRefGoogle Scholar
  34. 34.
    Purves D (2008) Neuroscience. Sinauer, SunderlandGoogle Scholar
  35. 35.
    Richerson GB, Aston-Jones G, Saper CB (2012) The modulatory functions of the brain stem. In: Kandel ER, Schwartz JC, Jessell TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science. McGraw-Hill Professional, New York, pp 1038–1055Google Scholar
  36. 36.
    Sara SJ, Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76:130–141PubMedCrossRefGoogle Scholar
  37. 37.
    Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42:33–84PubMedCrossRefGoogle Scholar
  38. 38.
    Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58:1–17PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Graeff FG (2004) Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 28:239–259PubMedCrossRefGoogle Scholar
  40. 40.
    Torrealba F, Riveros ME, Contreras M, Valdes JL (2012) Histamine and motivation. Front Syst Neurosci 6:51PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Fuxe K, Dahlstrom AB, Jonsson G, Marcellino D, Guescini M, Dam M, Manger P, Agnati L (2010) The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 90:82–100PubMedCrossRefGoogle Scholar
  42. 42.
    Hertz L, Schousboe I, Hertz L, Schousboe A (1984) Receptor expression in primary cultures of neurons or astrocytes. Prog Neuro-psychopharmacol Biol Psychiatry 8:521–527CrossRefGoogle Scholar
  43. 43.
    Hosli E, Hosli L (1993) Receptors for neurotransmitters on astrocytes in the mammalian central nervous system. Prog Neurobiol 40:477–506PubMedCrossRefGoogle Scholar
  44. 44.
    Morin D, Sapena R, Zini R, Onteniente B, Tillement JP (1997) Characterization of beta-adrenergic receptors of freshly isolated astrocytes and neurons from rat brain. Life Sci 60:315–324PubMedCrossRefGoogle Scholar
  45. 45.
    Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem Int 57:411–420PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Stone EA, Ariano MA (1989) Are glial cells targets of the central noradrenergic system? A review of the evidence. Brain Res Brain Res Rev 14:297–309PubMedCrossRefGoogle Scholar
  47. 47.
    Stone EA, John SM, Bing G, Zhang Y (1992) Studies on the cellular localization of biochemical responses to catecholamines in the brain. Brain Res Bull 29:285–288PubMedCrossRefGoogle Scholar
  48. 48.
    Hama K, Arii T, Katayama E, Marton M, Ellisman MH (2004) Tri-dimensional morphometric analysis of astrocytic processes with high voltage electron microscopy of thick Golgi preparations. J Neurocytol 33:277–285PubMedCrossRefGoogle Scholar
  49. 49.
    Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Quesseveur G, Gardier AM, Guiard BP (2013) The monoaminergic tripartite synapse: a putative target for currently available antidepressant drugs. Curr Drug Targ 14:1277–1294CrossRefGoogle Scholar
  51. 51.
    Hernandez J, Condes-Lara M (1992) Brain Na+/K(+)-ATPase regulation by serotonin and norepinephrine in normal and kindled rats. Brain Res 593:239–244PubMedCrossRefGoogle Scholar
  52. 52.
    Mercado R, Hernandez J (1992) Regulatory role of a neurotransmitter (5-HT) on glial Na+/K(+)-ATPase in the rat brain. Neurochem Int 21:119–127PubMedCrossRefGoogle Scholar
  53. 53.
    Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose CR, Peng L (2014) Roles of astrocytic Na+, K+-ATPase and glycogenolysis for K homeostasis in mammalian brain. J Neurosci Res 93(7):1019–1030PubMedCrossRefGoogle Scholar
  54. 54.
    Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342PubMedCrossRefGoogle Scholar
  55. 55.
    Pesce L, Comellas A, Sznajder JI (2003) Beta-adrenergic agonists regulate Na–K-ATPase via p70S6k. Am J Physiol Lung Cell Mol Physiol 285:L802–L807PubMedCrossRefGoogle Scholar
  56. 56.
    Hertz L, Peng L, Kjeldsen C, Dienel G, O’Dowd BS (2003) Ion, transmitter and drug effects on energy metabolism in astrocytes. Adv Mol Cell Biol 31:435–460CrossRefGoogle Scholar
  57. 57.
    Alexander GM, Grothusen JR, Gordon SW, Schwartzman RJ (1997) Intracerebral microdialysis study of glutamate reuptake in awake, behaving rats. Brain Res 766:1–10PubMedCrossRefGoogle Scholar
  58. 58.
    Quincozes-Santos A, Bobermin LD, Kleinkauf-Rocha J, Souza DO, Riesgo R, Goncalves CA, Gottfried C (2009) Atypical neuroleptic risperidone modulates glial functions in C6 astroglial cells. Prog Neuro-psychopharmacol Biol Psychiatry 33:11–15CrossRefGoogle Scholar
  59. 59.
    Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394PubMedCrossRefGoogle Scholar
  60. 60.
    Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61PubMedGoogle Scholar
  61. 61.
    Cloix JF, Tahi Z, Boissonnet A, Hevor T (2010) Brain glycogen and neurotransmitter levels in fast and slow methionine sulfoximine-selected mice. Exp Neurol 225:274–283PubMedCrossRefGoogle Scholar
  62. 62.
    Hutchinson DS, Summers RJ, Gibbs ME (2008) Energy metabolism and memory processing: role of glucose transport and glycogen in responses to adrenoceptor activation in the chicken. Brain Res Bull 76:224–234PubMedCrossRefGoogle Scholar
  63. 63.
    Dienel GA, Cruz NF (2015) Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis 30:281–298PubMedCrossRefGoogle Scholar
  64. 64.
    Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K(+) in astrocytes: potential implications for K(+) Homeostasis and glycogen usage in brain. Neurochem Res 38:472–485PubMedCrossRefGoogle Scholar
  65. 65.
    Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Harik SI, Busto R, Martinez E (1982) Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J Neurosci 2:409–414PubMedGoogle Scholar
  67. 67.
    Ingvar M, Lindvall O, Folbergrova J, Siesjo BK (1983) Influence of lesions of the noradrenergic locus coeruleus system on the cerebral metabolic response to bicuculline-induced seizures. Brain Res 264:225–231PubMedCrossRefGoogle Scholar
  68. 68.
    Harik SI, LaManna JC, Light AI, Rosenthal M (1979) Cerebral norepinephrine: influence on cortical oxidative metabolism in situ. Science 206:69–71PubMedCrossRefGoogle Scholar
  69. 69.
    LaManna JC, Harik SI, Light AI, Rosenthal M (1981) Norepinephrine depletion alters cerebral oxidative metabolism in the “active” state. Brain Res 204:87–101PubMedCrossRefGoogle Scholar
  70. 70.
    Morilak DA, Fornal CA, Jacobs BL (1987) Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. III. Glucoregulatory challenge. Brain Res 422:32–39PubMedCrossRefGoogle Scholar
  71. 71.
    Schwartz WJ (1978) 6-Hydroxydopamine lesions of rat locus coeruleus alter brain glucose consumption, as measured by the 2-deoxy-d-[(14)C]glucose tracer technique. Neurosci Lett 7:141–150PubMedCrossRefGoogle Scholar
  72. 72.
    Justice A, Feldman SM, Brown LL (1989) The nucleus locus coeruleus modulates local cerebral glucose utilization during noise stress in rats. Brain Res 490:73–84PubMedCrossRefGoogle Scholar
  73. 73.
    Levin BE, Craik RL, Hand PJ (1988) The role of norepinephrine in adult rat somatosensory (SmI) cortical metabolism and plasticity. Brain Res 443:261–271PubMedCrossRefGoogle Scholar
  74. 74.
    Craik RL, Hand PJ, Levin BE (1987) Locus coeruleus input affects glucose metabolism in activated rat barrel cortex. Brain Res Bull 19:495–499PubMedCrossRefGoogle Scholar
  75. 75.
    Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102:466–478PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Aoki C, Pickel VM (1992) Ultrastructural relations between beta-adrenergic receptors and catecholaminergic neurons. Brain Res Bull 29:257–263PubMedCrossRefGoogle Scholar
  77. 77.
    Cohen Z, Molinatti G, Hamel E (1997) Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J Cereb Blood Flow Metab 17:894–904PubMedCrossRefGoogle Scholar
  78. 78.
    Paspalas CD, Papadopoulos GC (1996) Ultrastructural relationships between noradrenergic nerve fibers and non-neuronal elements in the rat cerebral cortex. Glia 17:133–146PubMedCrossRefGoogle Scholar
  79. 79.
    Kipnis DM, Cori CF (1959) Studies of tissue permeability. V. The penetration and phosphorylation of 2-deoxyglucose in the rat diaphragm. J Biol Chem 234:171–177PubMedGoogle Scholar
  80. 80.
    Fray AE, Forsyth RJ, Boutelle MG, Fillenz M (1996) The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study. J Physiol 496(Pt 1):49–57PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Pachmerhiwala R, Bhide N, Straiko M, Gudelsky GA (2010) Role of serotonin and/or norepinephrine in the MDMA-induced increase in extracellular glucose and glycogenolysis in the rat brain. Eur J Pharmacol 644:67–72PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Fillenz M, Lowry JP, Boutelle MG, Fray AE (1999) The role of astrocytes and noradrenaline in neuronal glucose metabolism. Acta Physiol Scand 167:275–284PubMedCrossRefGoogle Scholar
  83. 83.
    Abraham WC, Delanoy RL, Dunn AJ, Zornetzer SF (1979) Locus coeruleus stimulation decreases deoxyglucose uptake in ipsilateral mouse cerebral cortex. Brain Res 172:387–392PubMedCrossRefGoogle Scholar
  84. 84.
    Hunt DG, Ding Z, Ivy JL (2002) Clenbuterol prevents epinephrine from antagonizing insulin-stimulated muscle glucose uptake. J Appl Physiol (Bethesda, MD: 1985) 92:1285–1292CrossRefGoogle Scholar
  85. 85.
    Chiasson JL, Shikama H, Chu DT, Exton JH (1981) Inhibitory effect of epinephrine on insulin-stimulated glucose uptake by rat skeletal muscle. J Clin Invest 68:706–713PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Jensen J, Aslesen R, Ivy JL, Brors O (1997) Role of glycogen concentration and epinephrine on glucose uptake in rat epitrochlearis muscle. Am J Physiol 272:E649–E655PubMedGoogle Scholar
  87. 87.
    Lembo G, Capaldo B, Rendina V, Iaccarino G, Napoli R, Guida R, Trimarco B, Sacca L (1994) Acute noradrenergic activation induces insulin resistance in human skeletal muscle. Am J Physiol 266:E242–E247PubMedGoogle Scholar
  88. 88.
    Dietz MR, Chiasson JL, Soderling TR, Exton JH (1980) Epinephrine regulation of skeletal muscle glycogen metabolism. Studies utilizing the perfused rat hindlimb preparation. J Biol Chem 255:2301–2307PubMedGoogle Scholar
  89. 89.
    Kipnis DM, Helmreich E, Cori CF (1959) Studies of tissue permeability. IV. The distribution of glucose between plasma and muscle. J Biol Chem 234:165–170PubMedGoogle Scholar
  90. 90.
    Sonnewald U, Wang AY, Schousboe A, Erikson R, Skottner A (1996) New aspects of lactate metabolism: IGF-I and insulin regulate mitochondrial function in cultured brain cells during normoxia and hypoxia. Dev Neurosci 18:443–448PubMedCrossRefGoogle Scholar
  91. 91.
    Boyd FT Jr, Clarke DW, Muther TF, Raizada MK (1985) Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J Biol Chem 260:15880–15884PubMedGoogle Scholar
  92. 92.
    Clarke DW, Boyd FT Jr, Kappy MS, Raizada MK (1984) Insulin binds to specific receptors and stimulates 2-deoxy-d-glucose uptake in cultured glial cells from rat brain. J Biol Chem 259:11672–11675PubMedGoogle Scholar
  93. 93.
    Heni M, Hennige AM, Peter A, Siegel-Axel D, Ordelheide AM, Krebs N, Machicao F, Fritsche A, Haring HU, Staiger H (2011) Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS ONE 6:e21594PubMedCentralPubMedCrossRefGoogle Scholar
  94. 94.
    Dienel GA (2010) Astrocytes are ‘good scouts’: being prepared also helps neighboring neurons. J Cereb Blood Flow Metab 30:1893–1894PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Magistretti PJ, Hof PR, Celio MR (1987) Noradrenergic sub-sensitivity in the cerebral cortex of the tottering mouse, a spontaneously epileptic mutant. Brain Res 403:181–185PubMedCrossRefGoogle Scholar
  96. 96.
    DiNuzzo M, Mangia S, Maraviglia B, Giove F (2014) Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis 30(1):307–316PubMedCrossRefGoogle Scholar
  97. 97.
    DiNuzzo M, Mangia S, Maraviglia B, Giove F (2014) Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 108:995–1012PubMedCrossRefGoogle Scholar
  98. 98.
    Hevor TK, Aissi E, Delorme P (1990) Correlation between carbohydrate and catecholamine level impairments in methionine sulfoximine epileptogenic rat brain. Neurochem Res 15:861–868PubMedCrossRefGoogle Scholar
  99. 99.
    Edwards C, Nahorski SR, Rogers KJ (1973) In vivo changes in the concentration of cerebral cyclic AMP, phosphorylase a and glycogen induced by biogenic amines. Br J Pharmacol 48:353p–354pPubMedCentralPubMedGoogle Scholar
  100. 100.
    Opler LA, Makman MH (1972) Mediation by cyclic AMP of hormone-stimulated glycogenolysis in cultured rat astrocytoma cells. Biochem Biophys Res Commun 46:1140–1145PubMedCrossRefGoogle Scholar
  101. 101.
    Medrano S, Gruenstein E, Dimlich RV (1992) Histamine stimulates glycogenolysis in human astrocytoma cells by increasing intracellular free calcium. Brain Res 592:202–207PubMedCrossRefGoogle Scholar
  102. 102.
    Arbones L, Picatoste F, Garcia A (1990) Histamine stimulates glycogen breakdown and increases 45Ca2+ permeability in rat astrocytes in primary culture. Mol Pharmacol 37:921–927PubMedGoogle Scholar
  103. 103.
    Quach TT, Duchemin AM, Rose C, Schwartz JC (1980) 3H-Glycogen hydrolysis elicited by histamine in mouse brain slices: selective involvement of H1 receptors. Mol Pharmacol 17:301–308PubMedGoogle Scholar
  104. 104.
    Arrang JM, Garbarg M, Quach TT, Dam Trung Tuong M, Yeramian E, Schwartz JC (1985) Actions of betahistine at histamine receptors in the brain. Eur J Pharmacol 111:73–84PubMedCrossRefGoogle Scholar
  105. 105.
    Quach TT, Rose C, Schwartz JC (1978) [3H]Glycogen hydrolysis in brain slices: responses to neurotransmitters and modulation of noradrenaline receptors. J Neurochem 30:1335–1341PubMedCrossRefGoogle Scholar
  106. 106.
    Pennington AJ, Pentreath VW (1987) Transmitter-induced glycogenolysis and gluconeogenesis in leech segmental ganglia. J Physiol (Paris) 82:218–228Google Scholar
  107. 107.
    Lee K, Makino S, Imagawa T, Kim M, Uehara M (2001) Effects of adrenergic agonists on glycogenolysis in primary cultures of glycogen body cells and telencephalon astrocytes of the chick. Poult Sci 80:1736–1742PubMedCrossRefGoogle Scholar
  108. 108.
    Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233PubMedCrossRefGoogle Scholar
  109. 109.
    Sorg O, Magistretti PJ (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J Neurosci 12:4923–4931PubMedGoogle Scholar
  110. 110.
    Cummins CJ, Lust WD, Passonneau JV (1983) Regulation of glycogenolysis in transformed astrocytes in vitro. J Neurochem 40:137–144PubMedCrossRefGoogle Scholar
  111. 111.
    Subbarao KV, Hertz L (1990) Effect of adrenergic agonists on glycogenolysis in primary cultures of astrocytes. Brain Res 536:220–226PubMedCrossRefGoogle Scholar
  112. 112.
    Gibbs ME, Hutchinson DS, Summers RJ (2008) Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis. Neuropsychopharmacology 33:2384–2397PubMedCrossRefGoogle Scholar
  113. 113.
    Quach TT, Duchemin AM, Rose C, Schwartz JC (1988) [3H]glycogenolysis in brain slices mediated by beta-adrenoceptors: comparison of physiological response and [3H]dihydroalprenolol binding parameters. Neuropharmacology 27:629–635PubMedCrossRefGoogle Scholar
  114. 114.
    Sangiao-Alvarellos S, Bouca P, Miguez JM, Soengas JL (2003) Intracerebroventricular injections of noradrenaline affect brain energy metabolism of rainbow trout. Physiol Biochem Zool 76:663–671PubMedCrossRefGoogle Scholar
  115. 115.
    O’Dowd BS, Barrington J, Ng KT, Hertz E, Hertz L (1995) Glycogenolytic response of primary chick and mouse cultures of astrocytes to noradrenaline across development. Brain Res Dev Brain Res 88:220–223PubMedCrossRefGoogle Scholar
  116. 116.
    Coopersmith R, Leon M (1995) Olfactory bulb glycogen metabolism: noradrenergic modulation in the young rat. Brain Res 674:230–237PubMedCrossRefGoogle Scholar
  117. 117.
    Leonard BE (1975) A study of the neurohumoral control of glycolysis in the mouse brain in vivo: role of noradrenaline and dopamine. Z Naturforschung Sect C Biosci 30:385–391Google Scholar
  118. 118.
    Requardt RP, Wilhelm F, Rillich J, Winkler U, Hirrlinger J (2010) The biphasic NAD(P)H fluorescence response of astrocytes to dopamine reflects the metabolic actions of oxidative phosphorylation and glycolysis. J Neurochem 115:483–492PubMedCrossRefGoogle Scholar
  119. 119.
    Cambray-Deakin M, Pearce B, Morrow C, Murphy S (1988) Effects of neurotransmitters on astrocyte glycogen stores in vitro. J Neurochem 51:1852–1857PubMedCrossRefGoogle Scholar
  120. 120.
    Matsui T, Soya S, Kawanaka K, Soya H (2014) Neuronal-activity-dependent hippocampal glycolysis mediated by dopamine. FASEB J 28(S1127):1123Google Scholar
  121. 121.
    Leonard BE (1975) The effect of 5-hydroxytryptamine and histamine on glycolysis in the mouse brain. Z Naturforschung Sect C Biosci 30:113–116Google Scholar
  122. 122.
    Perez-Maceira JJ, Mancebo MJ, Aldegunde M (2012) Serotonin-induced brain glycogenolysis in rainbow trout (Oncorhynchus mykiss). J Exp Biol 215:2969–2979PubMedCrossRefGoogle Scholar
  123. 123.
    Quach TT, Rose C, Duchemin AM, Schwartz JC (1982) Glycogenolysis induced by serotonin in brain: identification of a new class of receptor. Nature 298:373–375PubMedCrossRefGoogle Scholar
  124. 124.
    Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology (Berl) 216:75–84CrossRefGoogle Scholar
  125. 125.
    Seal LH, Pentreath VW (1985) Modulation of glial glycogen metabolism by 5-hydroxytryptamine in leech segmental ganglia. Neurochem Int 7:1037–1045PubMedCrossRefGoogle Scholar
  126. 126.
    Darvesh AS, Gudelsky GA (2003) Activation of 5-HT2 receptors induces glycogenolysis in the rat brain. Eur J Pharmacol 464:135–140PubMedCrossRefGoogle Scholar
  127. 127.
    Poblete JC, Azmitia EC (1995) Activation of glycogen phosphorylase by serotonin and 3,4-methylenedioxymethamphetamine in astroglial-rich primary cultures: involvement of the 5-HT2A receptor. Brain Res 680:9–15PubMedCrossRefGoogle Scholar
  128. 128.
    Zhang X, Peng L, Chen Y, Hertz L (1993) Stimulation of glycogenolysis in astrocytes by fluoxetine, an antidepressant acting like 5-HT. NeuroReport 4:1235–1238PubMedCrossRefGoogle Scholar
  129. 129.
    Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120PubMedCrossRefGoogle Scholar
  130. 130.
    Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22:1476–1489PubMedCrossRefGoogle Scholar
  131. 131.
    Swanson RA, Yu AC, Sharp FR, Chan PH (1989) Regulation of glycogen content in primary astrocyte culture: effects of glucose analogues, phenobarbital, and methionine sulfoximine. J Neurochem 52:1359–1365PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Magnetic Resonance for Brain Investigation LaboratoryMuseo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”RomeItaly
  2. 2.Dipartimento di FisicaSapienza Università di RomaRomeItaly
  3. 3.Fondazione Santa Lucia IRCCSRomeItaly
  4. 4.Department of Radiology, Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisUSA
  5. 5.Magnetic Resonance for Brain Investigation LaboratoryRomeItaly

Personalised recommendations