Neurochemical Research

, Volume 40, Issue 6, pp 1303–1310 | Cite as

Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus

  • Shawn Zheng Kai Tan
  • Despina E. Ganella
  • Alec Lindsay Ward Dick
  • Jhodie R. Duncan
  • Emma Ong-Palsson
  • Ross A. D. Bathgate
  • Jee Hyun Kim
  • Andrew J. Lawrence
Original Paper


We examined the role of hippocampal metabotropic glutamate receptor 5 (mGlu5) in spatial learning and memory. Although it has been shown that mGlu5 signalling is required for certain forms of learning and memory, its role in spatial learning is unclear since studies using pharmacological or knockout mice models provide inconsistent findings. Additionally, the location in the brain where mGlu5 signalling may modulate such learning is yet to be precisely delineated. We stereotaxically injected rAAV-Cre into the dorsal hippocampus of mGlu5loxP/loxP mice to knockdown mGlu5 in that region. We show for the first time that knockdown of mGlu5 in the dorsal hippocampus is sufficient to impair spatial learning in Morris Water Maze. Locomotor activity and memory retrieval were unaffected by the mGlu5 knockdown. Taken together, these findings support a key role for dorsal hippocampal mGlu5 signalling in spatial learning.


Hippocampus mGlu5 Spatial learning 



We are grateful to Dr Anis Contractor (Northwestern University, Chicago USA) for supply of mGlu5loxP/loxP mice. This research was supported by a project grant (APP1022201) from the National Health and Medical Research Council (NHMRC) of Australia awarded to AJL and JHK; Australian Research Council fellowships awarded to JRD and JHK, and NHMRC fellowships awarded to RADB and AJL. We acknowledge the Victorian Government’s Operational Infrastructure Support Program. We would also like to thank Dr Chris Bye and the Florey Behaviour Core Facility.


  1. 1.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39PubMedCrossRefGoogle Scholar
  2. 2.
    Riaza Bermudo-Soriano C, Perez-Rodriguez MM, Vaquero-Lorenzo C, Baca-Garcia E (2012) New perspectives in glutamate and anxiety. Pharmacol Biochem Behav 100(4):752–774PubMedCrossRefGoogle Scholar
  3. 3.
    Nguyen PV, Abel T, Kandel ER, Bourtchouladze R (2000) Strain-dependent differences in LTP and hippocampus-dependent memory in inbred mice. Learn Mem 7(3):170–179PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Nguyen PV, Duffy SN, Young JZ (2000) Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J Neurophysiol 84(5):2484–2493PubMedGoogle Scholar
  5. 5.
    Izquierdo I (1991) Role of NMDA receptors in memory. Trends Pharmacol Sci 12:128–129PubMedCrossRefGoogle Scholar
  6. 6.
    Cleva RM, Olive MF (2011) Positive allosteric modulators of type 5 metabotropic glutamate receptors (mGluR5) and their therapeutic potential for the treatment of CNS disorders. Molecules 16(3):2097–2106PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Ann Rev Pharmacol Toxicol 50:295–322CrossRefGoogle Scholar
  8. 8.
    Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163(1):53–57PubMedCrossRefGoogle Scholar
  9. 9.
    Duncan JR, Lawrence AJ (2012) The role of metabotropic glutamate receptors in addiction: evidence from preclinical models. Pharmacol Biochem Behav 100(4):811–824PubMedCrossRefGoogle Scholar
  10. 10.
    Bird MK, Lawrence AJ (2009) The promiscuous mGlu5 receptor: a range of partners for therapeutic possibilities? Trends Pharmacol Sci 30(12):617–623PubMedCrossRefGoogle Scholar
  11. 11.
    Bird MK, Lohmann P, West B, Brown RM, Kirchhoff J, Raymond CR, Lawrence AJ (2014) The mGlu5 receptor regulates extinction of cocaine-driven behaviours. Drug Alc Dep. 137:83–89CrossRefGoogle Scholar
  12. 12.
    Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17(13):5196–5205PubMedGoogle Scholar
  13. 13.
    Ayala JE, Chen Y, Banko JL, Sheffler DJ, Williams R, Telk AN, Watson NL, Xiang Z, Zhang Y, Jones PJ, Lindsley CW, Olive MF, Conn PJ (2009) mGluR5 positive allosteric modulators facilitate both hippocampal LTP and LTD and enhance spatial learning. Neuropsychopharmacology 34(9):2057–2071PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ballard TM, Woolley ML, Prinssen E, Huwyler J, Porter R, Spooren W (2005) The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology 179(1):218–229PubMedCrossRefGoogle Scholar
  15. 15.
    Car H, Stefaniuk R, Wisniewska RJ (2007) Effect of MPEP in morris water maze in adult and old rats. Pharmacol Rep 59(1):88–93PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson JJ, Bradbury MJ, Giracello DR, Chapman DF, Holtz G, Roppe J, King C, Cosford ND, Varney MA (2003) In vivo receptor occupancy of mGlu5 receptor antagonists using the novel radioligand [3H]3-methoxy-5-(pyridin-2-ylethynyl)pyridine). Eur J Pharmacol 473(1):35–40PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF, Tehrani L, Bradbury MJ, Cosford ND, Varney MA (2002) [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine binding to metabotropic glutamate receptor subtype 5 in rodent brain: in vitro and in vivo characterization. J Pharmacol Exp Ther 303(3):1044–1051PubMedCrossRefGoogle Scholar
  18. 18.
    Gravius A, Dekundy A, Nagel J, Morè L, Pietraszek M, Danysz W (2008) Investigation on tolerance development to subchronic blockade of mGluR5 in models of learning, anxiety, and levodopa-induced dyskinesia in rats. J Neural Trans 115(12):1609–1619CrossRefGoogle Scholar
  19. 19.
    Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14(4):381–392PubMedCrossRefGoogle Scholar
  20. 20.
    Hoess RH, Abremski K (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci (USA) 81(4):1026–1029PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lee I, Kesner RP (2003) Differential roles of dorsal hippocampal subregions in spatial working memory with short versus intermediate delay. Behav Neurosci 117(5):1044–1053PubMedCrossRefGoogle Scholar
  22. 22.
    Xu J, Zhu Y, Contractor A, Heinemann SF (2009) mGluR5 has a critical role in inhibitory learning. J Neurosci 29(12):3676–3684PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RAD (2013) Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 20(7):703–716PubMedCrossRefGoogle Scholar
  24. 24.
    Guggenhuber S, Monory K, Lutz B, Klugmann M (2010) AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS ONE 5(12):e15707PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kiyota T, Yamamoto M, Schroder B, Jacobsen MT, Swan RJ, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T (2009) AAV1/2-mediated CNS gene delivery of dominant-negative ccl2 mutant suppresses gliosis, [beta]-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 17(5):803–809PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Veldwijk MR, Topaly J, Laufs S, Hengge UR, Wenz F, Zeller WJ, Fruehauf S (2002) Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther 6(2):272–278PubMedCrossRefGoogle Scholar
  27. 27.
    Watson RE Jr, Wiegand SJ, Clough RW, Hoffman GE (1986) Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7(1):155–159PubMedCrossRefGoogle Scholar
  28. 28.
    Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3: new capabilities and interfaces. Nucleic Acids Res 40(15):e115CrossRefGoogle Scholar
  29. 29.
    McPherson CS, Mantamadiotis T, Tan S-S, Lawrence AJ (2010) Deletion of CREB1 from the dorsal telencephalon reduces motivational properties of cocaine. Cereb Cortex 20(4):941–952PubMedCrossRefGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  31. 31.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108PubMedCrossRefGoogle Scholar
  32. 32.
    D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36(1):60–90PubMedCrossRefGoogle Scholar
  33. 33.
    Gerstein H, O’Riordan K, Osting S, Schwarz M, Burger C (2012) Rescue of synaptic plasticity and spatial learning deficits in the hippocampus of Homer1 knockout mice by recombinant Adeno-associated viral gene delivery of Homer1c. Neurobiol Learn Mem 97(1):17–29PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Bach ME, Barad M, Son H, Zhuo M, Lu YF, Shih R, Mansuy I, Hawkins RD, Kandel ER (1999) Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc Natl Acad Sci (USA) 96(9):5280–5285CrossRefGoogle Scholar
  35. 35.
    Bikbaev A, Neyman S, Ngomba RT, Conn PJ, Nicoletti F, Manahan-Vaughan D (2008) MGluR5 mediates the interaction between late-LTP, network activity, and learning. PLoS ONE 3(5):e2155PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Francesconi W, Cammalleri M (1022) Sanna PP (2004) The metabotropic glutamate receptor 5 is necessary for late-phase long-term potentiation in the hippocampal CA1 region. Brain Res 1–2:12–18Google Scholar
  37. 37.
    Abel T, Lattal KM (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 11(2):180–187PubMedCrossRefGoogle Scholar
  38. 38.
    Janssens N, Lesage ASJ (2001) Glutamate receptor subunit expression in primary neuronal and secondary glial cultures. J Neurochem 77(6):1457–1474PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas KL, Davis S, Hunt SP, Laroche S (1996) Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo. Learn Mem 3(2–3):197–208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shawn Zheng Kai Tan
    • 1
    • 3
  • Despina E. Ganella
    • 1
    • 2
  • Alec Lindsay Ward Dick
    • 1
    • 2
  • Jhodie R. Duncan
    • 1
    • 3
  • Emma Ong-Palsson
    • 2
  • Ross A. D. Bathgate
    • 2
    • 4
  • Jee Hyun Kim
    • 1
    • 2
  • Andrew J. Lawrence
    • 1
    • 2
  1. 1.Behavioural Neuroscience DivisionFlorey Institute of Neuroscience and Mental HealthParkvilleAustralia
  2. 2.Florey Department of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
  3. 3.Department of Anatomy and NeuroscienceUniversity of MelbourneParkvilleAustralia
  4. 4.Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleAustralia

Personalised recommendations