Neurochemical Research

, Volume 40, Issue 6, pp 1095–1101 | Cite as

Capillarisin Suppresses Lipopolysaccharide-Induced Inflammatory Mediators in BV2 Microglial Cells by Suppressing TLR4-Mediated NF-κB and MAPKs Signaling Pathway

  • Zhen YuEmail author
  • Ling Tang
  • Lifen Chen
  • Jifang Li
  • Wanfu Wu
  • Changlin Hu
Original Paper


Capillarisin, one of the major bioactive compounds derived from Artemisia capillaries Thunb, has been reported to have extensive pharmacological properties, such as ant-inflammatory and anti-nociceptive activities. However, the molecular mechanisms responsible for the anti-inflammatory activity of capillarisin have not been elucidated in microglia. In the present study, we investigated the anti-inflammatory effects and molecular mechanisms of capillarisin on LPS-stimulated BV2 microglial cells. The effects of capillarisin on inflammatory mediators TNF-α, IL-6, IL-1β, NO and PGE2 were detected. The effects of capillarisin on NF-κB and MAPK activation were detected by western blotting. The results showed that capillarisin suppressed LPS-induced TNF-α, IL-6, IL-1β, NO and PGE2 production in a dose-dependent manner. Capillarisin also inhibited LPS-induced TLR4 expression, NF-κB and MAPKs activation in BV2 microglia. In conclusion, capillarisin inhibited LPS-induced inflammation by blocking TLR4-mediated NF-κB and MAPKs activation in BV2 microglia.


Capillarisin LPS NF-κB Microglia 



This study was supported by grants from the Natural Science Foundation of Chongqing (Grant No. CSTC2012JJA10067).

Conflict of interest

All authors declare that they have no conflict of interest.


  1. 1.
    Skaper SD, Facci L, Giusti P (2014) Neuroinflammation, microglia and mast cells in the Pathophysiology of neurocognitive disorders: a review. CNS Neurol Disord Drug Targets 13:1654–1666PubMedCrossRefGoogle Scholar
  2. 2.
    Li R, Huang YG, Fang D, Le WD (2004) (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 78:723–731PubMedCrossRefGoogle Scholar
  3. 3.
    McGeer PL, McGeer EG (2014) Targeting microglia for the treatment of Alzheimer’s disease. Expert Opin Ther Targets 19:497–506PubMedCrossRefGoogle Scholar
  4. 4.
    Merighi S, Gessi S, Varani K, Fazzi D, Stefanelli A, Borea PA (2013) Morphine mediates a proinflammatory phenotype via mu-opioid receptor-PKCvarepsilon-Akt-ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 86:487–496PubMedCrossRefGoogle Scholar
  5. 5.
    Dello Russo C, Lisi L, Tringali G, Navarra P (2009) Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochem Pharmacol 78:1242–1251PubMedCrossRefGoogle Scholar
  6. 6.
    Kao TK, Ou YC, Raung SL, Lai CY, Liao SL, Chen CJ (2010) Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci 86:315–321PubMedCrossRefGoogle Scholar
  7. 7.
    Sehgal N, Agarwal V, Valli RK, Joshi SD, Antonovic L, Strobel HW, Ravindranath V (2011) Cytochrome P4504f, a potential therapeutic target limiting neuroinflammation. Biochem Pharmacol 82:53–64PubMedCrossRefGoogle Scholar
  8. 8.
    Ock J, Kim S, Yi KY, Kim NJ, Han HS, Cho JY, Suk K (2010) A novel anti-neuroinflammatory pyridylimidazole compound KR-31360. Biochem Pharmacol 79:596–609PubMedCrossRefGoogle Scholar
  9. 9.
    Pan XD, Chen XC, Zhu YG, Zhang J, Huang TW, Chen LM, Ye QY, Huang HP (2008) Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 76:362–372PubMedCrossRefGoogle Scholar
  10. 10.
    Dai XJ, Li N, Yu L, Chen ZY, Hua R, Qin X, Zhang YM (2015) Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4-dependent pathway. Cell Stress Chaperones 20:321–331PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB, Parks JS (2010) Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res 51:3196–3206PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Berbee JF, Coomans CP, Westerterp M, Romijn JA, Havekes LM, Rensen PC (2010) Apolipoprotein CI enhances the biological response to LPS via the CD14/TLR4 pathway by LPS-binding elements in both its N- and C-terminal helix. J Lipid Res 51:1943–1952PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK (2010) Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 51:334–344PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Khan S, Shehzad O, Chun J, Choi RJ, Park S, Islam MN, Choi JS, Kim YS (2014) Anti-hyperalgesic and anti-allodynic activities of capillarisin via suppression of inflammatory signaling in animal model. J Ethnopharmacol 152:478–486PubMedCrossRefGoogle Scholar
  15. 15.
    Lee JH, Chiang SY, Nam D, Chung WS, Lee J, Na YS, Sethi G, Ahn KS (2014) Capillarisin inhibits constitutive and inducible STAT3 activation through induction of SHP-1 and SHP-2 tyrosine phosphatases. Cancer Lett 345:140–148PubMedCrossRefGoogle Scholar
  16. 16.
    Han S, Lee JH, Kim C, Nam D, Chung WS, Lee SG, Ahn KS, Cho SK, Cho M, Ahn KS (2013) Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-kappaB activation. Immunopharmacol Immunotoxicol 35:34–42PubMedCrossRefGoogle Scholar
  17. 17.
    Khan S, Choi RJ, Shehzad O, Kim HP, Islam MN, Choi JS, Kim YS (2013) Molecular mechanism of capillarisin-mediated inhibition of MyD88/TIRAP inflammatory signaling in in vitro and in vivo experimental models. J Ethnopharmacol 145:626–637PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang F, Wang H, Wu Q, Lu Y, Nie J, Xie X, Shi J (2013) Resveratrol protects cortical neurons against microglia-mediated neuroinflammation. Phytotherapy research : PTR 27:344–349PubMedCrossRefGoogle Scholar
  19. 19.
    Jayasooriya RG, Lee KT, Kang CH, Dilshara MG, Lee HJ, Choi YH, Choi IW, Kim GY (2014) Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3 K/Akt-mediated nuclear transcription factor-kappaB pathway. Nutr Res 34:1111–1119PubMedCrossRefGoogle Scholar
  20. 20.
    Kawabe K, Takano K, Moriyama M, Nakamura Y (2014) lipopolysaccharide-stimulated transglutaminase 2 expression enhances endocytosis activity in the mouse microglial cell line BV-2. Neuroimmunomodulation. doi: 10.1159/000365484 PubMedGoogle Scholar
  21. 21.
    Kang SY, Jung HW, Lee MY, Lee HW, Chae SW, Park YK (2014) Effect of the semen extract of Cuscuta chinensis on inflammatory responses in LPS-stimulated BV-2 microglia. Chin J Nat Med 12:573–581PubMedGoogle Scholar
  22. 22.
    Chu CH, Chen SH, Wang Q, Langenbach R, Li H, Zeldin D, Chen SL, Wang S, Gao H, Lu RB, Hong JS (2014) PGE inhibits IL-10 production via EP2-mediated beta-arrestin signaling in neuroinflammatory condition. Mol Neurobiol. doi: 10.1007/s12035-014-8889-0 Google Scholar
  23. 23.
    Velagapudi R, Aderogba M, Olajide OA (2014) Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-kappaB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta 1840:3311–3319PubMedCrossRefGoogle Scholar
  24. 24.
    Yu SY, Zuo LJ, Wang F, Chen ZJ, Hu Y, Wang YJ, Wang XM, Zhang W (2014) Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: a cross-sectional study. BMC Neurol 14:113PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291PubMedCrossRefGoogle Scholar
  26. 26.
    Yu H, Valerio M, Bielawski J (2013) Fenretinide inhibited de novo ceramide synthesis and proinflammatory cytokines induced by Aggregatibacter actinomycetemcomitans. J Lipid Res 54:189–201PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Cai L, Wang Z, Meyer JM, Ji A, van der Westhuyzen DR (2012) Macrophage SR-BI regulates LPS-induced pro-inflammatory signaling in mice and isolated macrophages. J Lipid Res 53:1472–1481PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Heyninck K, Lahtela-Kakkonen M, Van der Veken P, Haegeman G, Vanden Berghe W (2014) Withaferin A inhibits NF-kappaB activation by targeting cysteine 179 in IKKbeta. Biochem Pharmacol 91:501–509PubMedCrossRefGoogle Scholar
  29. 29.
    Wang L, Xu Y, Yu Q, Sun Q, Xu Y, Gu Q, Xu X (2014) H-RN, a novel antiangiogenic peptide derived from hepatocyte growth factor inhibits inflammation in vitro and in vivo through PI3 K/AKT/IKK/NF-kappaB signal pathway. Biochem Pharmacol 89:255–265PubMedCrossRefGoogle Scholar
  30. 30.
    Danai LV, Guilherme A, Guntur KV, Straubhaar J, Nicoloro SM, Czech MP (2013) Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling. J Lipid Res 54:2697–2707PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhen Yu
    • 1
    Email author
  • Ling Tang
    • 2
  • Lifen Chen
    • 1
  • Jifang Li
    • 1
  • Wanfu Wu
    • 3
  • Changlin Hu
    • 1
  1. 1.Department of Neurology, The Second Affiliated HospitalChongqing University of Medical SciencesChongqingPeople’s Republic of China
  2. 2.Department of Neurology, The Fifth Affiliated HospitalChongqing University of Medical SciencesChongqingPeople’s Republic of China
  3. 3.Department of Neurology, The First Affiliated HospitalChongqing University of Medical SciencesChongqingPeople’s Republic of China

Personalised recommendations