Neurochemical Research

, Volume 40, Issue 1, pp 81–88 | Cite as

Prolyl Carboxypeptidase Activity Decline Correlates with Severity and Short-Term Outcome in Acute Ischemic Stroke

  • Kaat Kehoe
  • Raf Brouns
  • Robert Verkerk
  • Sebastiaan Engelborghs
  • Peter Paul De Deyn
  • Dirk Hendriks
  • Ingrid De Meester
Original Paper

Abstract

Prolyl carboxypeptidase (PRCP) is an enzyme associated with cerebrovascular risk factors such as hypertension, diabetes mellitus, obesity and hyperlipidemia. We aim to evaluate the relation between serum PRCP activity and severity, evolution and outcome of acute ischemic stroke. We used a specific RP-HPLC activity assay to measure PRCP activity in serum of 50 stroke patients at admission, and at 24 h, 72 h and 7 days after stroke onset to assess correlations with stroke severity based on the National Institutes of Health Stroke scale score (NIHSS), infarct volume on brain MRI scan, stroke outcome based on the modified Rankin scale (mRS) and mortality at 3 months after stroke. The average PRCP activity in serum decreased significantly the first 24 h after stroke onset and returned to baseline values at day 7. High NIHSS scores and infarct volumes at admission were related with a more pronounced decrease of PRCP in the first 24 h after stroke (ΔPRCP24, r = 0.31, P < 0.05; r = 0.30, P < 0.05). In addition, patients who displayed a more pronounced decrease in PRCP levels during the first 24 h after stroke were more likely to be institutionalized upon discharge (n = 21) (ΔPRCP24 ± SD, 0.05 ± 0.10 U/L vs. 0.17 ± 0.14 U/L, P = 0.001). The decrease in PRCP levels in the first 24 h after stroke onset is associated with stroke severity and an unfavourable short-term stroke outcome.

Keywords

Prolyl carboxypeptidase Acute ischemic stroke Enzyme activity Angiotensin Angiotensinase C 

Abbreviations

proCPU

Procarboxypeptidase U

PRCP

Prolyl carboxypeptidase

Ang-(1-8)

Angiotensin-(1-8)

Ang-(1-7)

Angiotensin-(1-7)

TOAST

Trial of Org 10172 in Acute Stroke Treatment

CRP

C-reactive protein

NIHSS

National Institutes of Health Stroke Scale

EPSS

European Progressing Stroke Study

mRS

Modified Rankin scale

Notes

Acknowledgments

The authors gratefully thank Nicole Lamoen for excellent technical assistance, Lesley Baerts and Jill Luyckx for logistic support with blood samples. This work was supported by the Fund for Scientific Research Flanders (Belgium, FWO–Vlaanderen) and the University of Antwerp Research Fund. Kaat Kehoe is a research assistant for FWO–Vlaanderen (Grant 11E4613N). This study was also supported by: the Institute Born-Bunge; the agreement between the Institute Born-Bunge and the University of Antwerp; Interuniversity Poles of Attraction (IAP Network P7/16) of the Belgian Federal Science Policy Office; the Flemish Government initiated Methusalem excellence grant, Belgium; and the Medical Research Foundation Antwerp.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11064_2014_1468_MOESM1_ESM.docx (388 kb)
Supplementary material 1 (DOCX 387 kb)

References

  1. 1.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke Lancet 371:1612–1623CrossRefGoogle Scholar
  2. 2.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Turner MB et al (2013) Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127:e6–e245PubMedCrossRefGoogle Scholar
  3. 3.
    Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–495PubMedCrossRefGoogle Scholar
  4. 4.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397PubMedCrossRefGoogle Scholar
  5. 5.
    Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1:17–25PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Brouns R, Heylen E, Willemse JL, Sheorajpanday R, De Surgeloose D, Verkerk R, De Deyn PP, Hendriks DF (2010) The decrease in procarboxypeptidase U (TAFI) concentration in acute ischemic stroke correlates with stroke severity, evolution and outcome. J Thromb Haemost 8:75–80PubMedCrossRefGoogle Scholar
  7. 7.
    O’Donoghue AJ, Eroy-reveles AA, Knudsen GM, Ingram J, Zhou M, Statnekov JB, Greninger AL, Hostetter DR, Qu G, Maltby DA, Anderson MO, DeRIsi JL, Mckerrow JH, Burlingame AL, Craik CS (2013) Global identification of peptidase specificity by multiplex substrate profiling. Nat Methods 9:1095–1100CrossRefGoogle Scholar
  8. 8.
    Mallela J, Yang J, Shariat-Madar Z (2009) Prolylcarboxypeptidase: a cardioprotective enzyme. Int J Biochem Cell Biol 41:477–481PubMedCrossRefGoogle Scholar
  9. 9.
    Skidgel RA, Erdös EG (1998) Cellular carboxypeptidases. Immunol Rev 161:129–141PubMedCrossRefGoogle Scholar
  10. 10.
    Shariat-Madar Z, Mahdi F, Schmaier AH (2004) Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 103:4554–4561PubMedCrossRefGoogle Scholar
  11. 11.
    Chajkowski SM, Mallela J, Watson DE, Wang J, McCurdy CR, Rimoldi JM, Shariat-Madar Z (2011) Highly selective hydrolysis of kinins by recombinant prolylcarboxypeptidase. Biochem Biophys Res Commun 405:338–343PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Shariat-Madar Z, Rahimy E, Mahdi F, Schmaier AH (2005) Overexpression of prolylcarboxypeptidase enhances plasma prekallikrein activation on Chinese hamster ovary cells. Am J Physiol Heart Circ Physiol 289:H2697–H2703PubMedCrossRefGoogle Scholar
  13. 13.
    Wallingford N, Perroud B, Gao Q, Coppola A, Gyengesi E, Liu ZW, Goa XB, Diament A, Haus KA, Shariat-Madar Z, Mahdi F, Wardlaw SL, Schmaier AH, Warden CH, Diano S (2009) Prolylcarboxypeptidase regulates food intake by inactivating α-MSH in rodents. J Clin Invest 119:2291–2303PubMedCentralPubMedGoogle Scholar
  14. 14.
    Palmiter RD (2009) Reduced levels of neurotransmitter-degrading enzyme PRCP promote obesity. J Clin Invest 119:2130–2133PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Adams GN, LaRusch GA, Stavrou E, Zhou Y, Nieman MT, Jacobs GH, Cui Y, Lu Y, Jain MK, Mahdi F, Shariat-Madar Z, Okada Y, D’Alecy LG, Schmaier AH (2011) Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis. Blood 117:3929–3937PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wang L, Feng Y, Zhang Y, Zhou H, Jiang S, Niu T, Wei LJ, Xu X, Xu X, Wang X (2006) Prolylcarboxypeptidase gene, chronic hypertension, and risk of preeclampsia. Am J Obstet Gynecol 195:162–171PubMedCrossRefGoogle Scholar
  17. 17.
    Ngo ML, Mahdi F, Kolte D, Shariat-Madar Z (2009) Upregulation of prolylcarboxypeptidase (PRCP) in lipopolysaccharide (LPS) treated endothelium promotes inflammation. J Inflamm 6:3CrossRefGoogle Scholar
  18. 18.
    Zhu L, Carretero OA, Liao TD, Harding P, Li H, Sumners C, Yang XP (2010) Role of prolylcarboxypeptidase in angiotensin II type 2 receptor-mediated bradykinin release in mouse coronary artery endothelial cells. Hypertension 56:384–390PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Zhang Y, Hong XM, Xing HX, Li JP, Huo Y, Xu XP (2009) E112D polymorphism in the prolylcarboxypeptidase gene is associated with blood pressure response to benzapril in Chinese hypertensive patients. Chin Med J 122:2461–2465PubMedGoogle Scholar
  20. 20.
    Xu S, Lind L, Zhao L, Lindahl B, Venge P (2012) Plasma prolylcarboxypeptidase (angiotensinase C) is increased in obesity and diabetes mellitus and related to cardiovascular dysfunction. Clin Chem 58:1110–1115PubMedCrossRefGoogle Scholar
  21. 21.
    Rabey FM, Gadepalli RSVS, Diano S, Cheng Q, Tabrizian T, Gailani D, Rimoldi JM, Shariat-Madar Z (2012) Influence of a novel inhibitor (UM8190) of prolylcarboxypeptidase (PRCP) on appetite and thrombosis. Curr Med Chem 19:4194–4206PubMedCrossRefGoogle Scholar
  22. 22.
    Renna R, Pilato F, Profice P, Marca GD, Broccolini A, Morosetti R, Frisullo G, Rossi E, De Stefano V, Di Lazzaro V (2014) Risk factor and etiology analysis of ischemic stroke in young adult patients. J Stroke Cerebrovasc Dis 23:1–7CrossRefGoogle Scholar
  23. 23.
    Shariat-Madar Z, Mahdi F, Schmaier AH (2002) Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 277:17962–17969PubMedCrossRefGoogle Scholar
  24. 24.
    Kehoe K, Verkerk R, Sim Y, Waumans Y, Van der Veken P, Lambeir AM, De Meester I (2013) Validation of a specific prolylcarboxypeptidase activity assay and its suitability for plasma and serum measurements. Anal Biochem 443:232–239PubMedCrossRefGoogle Scholar
  25. 25.
    Jeong JK, Diano S (2014) Prolyl carboxypeptidase mRNA expression in the mouse brain. Brain Res 1542:85–92PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Buga AM, Scholz CJ, Kumar S, Herndon JG, Alexandru D, Cojocaru GR, Dandekar T, Popa-Wagner A (2012) Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS One 7:e50985PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Adams GN, Stavrou EX, Fang C, Merkulova A, Alaiti MA, Nakajima K, Morooka T, Merkulov S, LaRusch GA, Simon DI, Jain MK, Schmaier AH (2013) Prolylcarboxypeptidase promotes angiogenesis and vascular repair. Blood 122:1522–1531PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Willemse JL, Brouns R, Heylen E, De Deyn PP, Hendriks DF (2008) Carboxypeptidase U (TAFIa) activity is induced in vivo in ischemic stroke patients receiving thrombolytic therapy. J Thromb Haemost 6:200–202PubMedCrossRefGoogle Scholar
  29. 29.
    Brouns R, Heylen E, Sheorajpanday R, Willemse JL, Kunnen J, De Surgeloose D, Hendriks DF, De Deyn PP (2009) Carboxypeptidase U (TAFIa) decreases the efficacy of thrombolytic therapy in ischemic stroke patients. Clin Neurol Neurosurg 111:165–170PubMedCrossRefGoogle Scholar
  30. 30.
    Brouns R, Sheorajpanday R, Wauters A, De Surgeloose D, Mariën P, De Deyn PP (2008) Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin Chim Acta 397:27–31PubMedCrossRefGoogle Scholar
  31. 31.
    Brouns R, Marescau B, Possemiers I, Sheorajpanday R, De Deyn PP (2009) Dimethylarginine levels in cerebrospinal fluid of hyperacute ischemic stroke patients are associated with stroke severity. Neurochem Res 34:1642–1649PubMedCrossRefGoogle Scholar
  32. 32.
    Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41PubMedCrossRefGoogle Scholar
  33. 33.
    Birschel P, Ellul J, Barer D (2004) Progressing stroke: towards an internationally agreed definition. Cerebrovasc Dis 17:242–252PubMedCrossRefGoogle Scholar
  34. 34.
    Uyttenboogaart M, Luijckx GJ, Vroomen PCAJ, Stewart RE, De Keyser J (2007) Measuring disability in stroke: relationship between the modified Rankin scale and the Barthel index. J Neurol 254:1113–1117PubMedCrossRefGoogle Scholar
  35. 35.
    Selim M, Savitz S, Linfante I, Caplan L, Schlaug G (2005) Effect of pre-stroke use of ACE inhibitors on ischemic stroke severity. BMC Neurol 5:10PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Manabe Y, Kono S, Tanaka T, Narai H, Omori N (2009) High blood pressure in acute ischemic stroke and clinical outcome. Neurol Int 1:e1PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lu J, Jiang T, Wu L, Gao L, Wang Y, Zhou F, Zhang S, Zhang Y (2013) The expression of angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis are upregulated after acute cerebral ischemic stroke in rats. Neuropeptides 47:289–295PubMedCrossRefGoogle Scholar
  38. 38.
    Gironacci MM, Carbajosa NAL, Goldstein J, Cerrato BD (2013) Neuromodulatory role of angiotensin-(1-7) in the central nervous system. Clin Sci (Lond) 125:57–65CrossRefGoogle Scholar
  39. 39.
    Mecca AP, Regenhardt RW, O’Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C (2011) Cerebroprotection by angiotensin-1-7 in endothelin-1-induced ischaemic stroke. Exp Physiol 96:1084–1096PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Blum A, Vaispapir V, Keinan-Boker L, Soboh S, Yehuda H, Tamir S (2012) Endothelial dysfunction and procoagulant activity in acute ischemic stroke. J Vasc Interv Neurol 5:33–39PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kaat Kehoe
    • 1
  • Raf Brouns
    • 2
  • Robert Verkerk
    • 1
  • Sebastiaan Engelborghs
    • 3
    • 4
  • Peter Paul De Deyn
    • 3
    • 4
  • Dirk Hendriks
    • 1
  • Ingrid De Meester
    • 1
  1. 1.Laboratory of Medical Biochemistry, Department of Pharmaceutical SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Neurology, Universitair Ziekenhuis Brussel, Center for NeurosciencesVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Department of Neurology and Memory ClinicHospital Network Antwerp (ZNA) Middelheim and Hoge BeukenAntwerpBelgium
  4. 4.Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-BungeUniversity of AntwerpAntwerpBelgium

Personalised recommendations