Neurochemical Research

, Volume 40, Issue 1, pp 1–14 | Cite as

The Protective Effect of Epoxyeicosatrienoic Acids on Cerebral Ischemia/Reperfusion Injury is Associated with PI3K/Akt Pathway and ATP-Sensitive Potassium Channels

  • You-Yang Qu
  • Mei-Yan Yuan
  • Yu Liu
  • Xing-Jun XiaoEmail author
  • Yu-Lan ZhuEmail author
Original Paper


Epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolite of arachidonic acid, have been demonstrated to have neuroprotective effect. Phosphatidylinositol 3-kinase (PI3K)/Akt and ATP-sensitive potassium (KATP) channels are thought to be important factors that mediate neuroprotection. However, little is known about the role of PI3K/Akt and KATP channels in brain after EETs administration. In vitro experiment, oxygen–glucose deprivation (OGD) was performed in cultured rat cerebral microvascular smooth muscle cells (SMCs) for 4 h. The effect of 14,15-EET on OGD induced cell apoptosis was examined after reoxygenation. Western blot and real-time PCR were used to analyze the expression of Kir6.1, SUR2B (two subunits of KATP channels) and p-Akt on cerebral microvascular SMCs. In vivo experiments, we use 12-(3-adamantan-1-yl-ureido)-dodecanoic acid [AUDA, a specific soluble epoxide hydrolase (sEH) inhibitor] to confirm the effect of EETs indirectly. Rats were injected intraperitoneally with AUDA before being subjected to middle cerebral artery occlusion (MCAO). We detected the apoptosis and the expression of p-Akt, Kir6.1 and SUR2B in ischemic penumbra. The results showed that EETs protect against cerebral ischemia/reperfusion (I/R) injury and upregulated the expression of p-Akt and Kir6.1 in both of ischemic penumbra and OGD induced cerebral microvascular SMCs. The protective effect was inhibited by Wortmannin (a specific PI3K inhibitor) and Glib (a specific KATP inhibitor) respectively in vitro experiment. In conclusion, these results suggested that the protective effect of EETs on cerebral I/R injury is associated with PI3K/Akt pathway and KATP channels. Furthermore, the PI3K pathway may contribute to mediating KATP channels on cerebral microvascular SMCs.


Epoxyeicosatrienoic acids Cerebral ischemia/reperfusion injury PI3K/Akt pathway ATP-sensitive potassium channel Soluble epoxide hydrolase inhibitor 



Epoxyeicosatrienoic acids


Phosphatidylinositol 3-kinase


ATP-sensitive potassium




Oxygen–glucose deprivation


Oxygen–glucose deprivation + reoxygenation


Arachidonic acid


Middle cerebral artery occlusion



This study was supported by the National Natural Science Foundation of China (No. 81171077). We would like to thank Professor Daling Zhu from College of Pharmacy, Harbin Medical University for technical assistance.


  1. 1.
    Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32:160–169CrossRefPubMedGoogle Scholar
  2. 2.
    Sudhahar V, Shaw S, Imig JD (2010) Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem 17:1181–1190CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Imig JD (2010) Targeting epoxides for organ damage in hypertension. J Cardiovasc Pharmacol 56:329–335CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Dorrance AM, Rupp N, Pollock DM, Newman JW, Hammock BD, Imig JD (2005) An epoxide hydrolase inhibitor, 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA), reduces ischemic cerebral infarct size in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 46:842–848CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD (2009) Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. Am J Pathol 174:2086–2095CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Sarkar P, Zaja I, Bienengraeber M, Rarick KR, Terashvili M, Canfield S, Falck JR, Harder DR (2014) Epoxyeicosatrienoic acids pre-treatment improves amyloid beta-induced mitochondrial dysfunction in cultured rat hippocampal astrocytes. Am J Physiol Heart Circ Physiol 306(4):H475–H484. doi: 10.1152/ajpheart.00001.2013
  7. 7.
    Armstead WM, Ganguly K, Riley J, Zaitsev S, Cines DB, Higazi AA, Muzykantov VR (2012) RBC-coupled tPA prevents whereas tPA aggravates JNK MAPK-mediated impairment of ATP- and Ca-sensitive K channel-mediated cerebrovasodilation after cerebral photothrombosis. Transl Stroke Res 3:114–121CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 1227:12–18CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Shioda N, Han F, Fukunaga K (2009) Role of Akt and ERK signaling in the neurogenesis following brain ischemia. Int Rev Neurobiol 85:375–387CrossRefPubMedGoogle Scholar
  10. 10.
    Yang S, Lin L, Chen JX, Lee CR, Seubert JM, Wang Y, Wang H, Chao ZR, Tao DD, Gong JP, Lu ZY, Wang DW, Zeldin DC (2007) Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. Am J Physiol Heart Circ Physiol 293:H142–H151CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Batchu SN, Chaudhary KR, El-Sikhry H, Yang W, Light PE, Oudit GY, Seubert JM (2012) Role of PI3Kalpha and sarcolemmal ATP-sensitive potassium channels in epoxyeicosatrienoic acid mediated cardioprotection. J Mol Cell Cardiol 53:43–52CrossRefPubMedGoogle Scholar
  12. 12.
    Yokoshiki H, Sunagawa M, Seki T, Sperelakis N (1998) ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol 274:C25–C37PubMedGoogle Scholar
  13. 13.
    Ashcroft FM, Gribble FM (1998) Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci 21:288–294CrossRefPubMedGoogle Scholar
  14. 14.
    Perez-Pinzon MA, Born JG (1999) Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C. Neuroscience 89:453–459CrossRefPubMedGoogle Scholar
  15. 15.
    Heurteaux C, Lauritzen I, Widmann C, Lazdunski M (1995) Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc Natl Acad Sci USA 92:4666–4670CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Yamada K, Inagaki N (2002) ATP-sensitive K(+) channels in the brain: sensors of hypoxic conditions. News Physiol Sci 17:127–130PubMedGoogle Scholar
  17. 17.
    Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Spector AA, Norris AW (2007) Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol 292:C996–C1012CrossRefPubMedGoogle Scholar
  19. 19.
    Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR, Alkayed NJ (2008) Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke J Cereb Circul 39:2073–2078CrossRefGoogle Scholar
  21. 21.
    Imig JD (2006) Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. Cardiovasc Drug Rev 24:169–188CrossRefPubMedGoogle Scholar
  22. 22.
    Bukhari IA, Gauthier KM, Jagadeesh SG, Sangras B, Falck JR, Campbell WB (2011) 14,15-Dihydroxy-eicosa-5(Z)-enoic acid selectively inhibits 14,15-epoxyeicosatrienoic acid-induced relaxations in bovine coronary arteries. J Pharmacol Exp Ther 336:47–55CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Imig JD, Simpkins AN, Renic M, Harder DR (2011) Cytochrome P450 eicosanoids and cerebral vascular function. Expert Rev Mol Med 13:e7. doi: 10.1017/S1462399411001773
  24. 24.
    Zeldin DC (2001) Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276:36059–36062CrossRefPubMedGoogle Scholar
  25. 25.
    Hwang SH, Tsai HJ, Liu JY, Morisseau C, Hammock BD (2007) Orally bioavailable potent soluble epoxide hydrolase inhibitors. J Med Chem 50:3825–3840CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Fang X, Weintraub NL, McCaw RB, Hu S, Harmon SD, Rice JB, Hammock BD, Spector AA (2004) Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. Am J Physiol Heart Circ Physiol 287:H2412–H2420CrossRefPubMedGoogle Scholar
  27. 27.
    Imig JD, Hammock BD (2009) Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discovery 8:794–805CrossRefGoogle Scholar
  28. 28.
    Zhang W, Koerner IP, Noppens R, Grafe M, Tsai HJ, Morisseau C, Luria A, Hammock BD, Falck JR, Alkayed NJ (2007) Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab 27:1931–1940CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Li J, Carroll MA, Chander PN, Falck JR, Sangras B, Stier CT (2008) Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front Biosci 13:3480–3487CrossRefPubMedGoogle Scholar
  30. 30.
    Lai XJ, Ye SQ, Zheng L, Li L, Liu QR, Yu SB, Pang Y, Jin S, Li Q, Yu AC, Chen XQ (2014) Selective 14-3-3gamma induction quenches p-beta-catenin Ser37/Bax-enhanced cell death in cerebral cortical neurons during ischemia. Cell Death Dis 5:e1184CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134PubMedGoogle Scholar
  32. 32.
    Obrenovitch TP (1995) The ischaemic penumbra: twenty years on. Cerebrovasc Brain Metab Rev 7:297–323PubMedGoogle Scholar
  33. 33.
    del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894CrossRefPubMedGoogle Scholar
  34. 34.
    Dirnagl U (2012) Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci 1268:21–25CrossRefPubMedGoogle Scholar
  35. 35.
    Ye D, Zhou W, Lu T, Jagadeesh SG, Falck JR, Lee HC (2006) Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 290:H1326–H1336CrossRefPubMedGoogle Scholar
  36. 36.
    Davis BB, Thompson DA, Howard LL, Morisseau C, Hammock BD, Weiss RH (2002) Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA 99:2222–2227CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321CrossRefPubMedGoogle Scholar
  38. 38.
    Kitagawa H, Warita H, Sasaki C, Zhang WR, Sakai K, Shiro Y, Mitsumoto Y, Mori T, Abe K (1999) Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett 274:45–48CrossRefPubMedGoogle Scholar
  39. 39.
    Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M, Abe K (2003) Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res 962:21–26CrossRefPubMedGoogle Scholar
  40. 40.
    Teramoto N (2006) Physiological roles of ATP-sensitive K+ channels in smooth muscle. J Physiol 572:617–624CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Thomzig A, Laube G, Pruss H, Veh RW (2005) Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J Comp Neurol 484:313–330CrossRefPubMedGoogle Scholar
  42. 42.
    Melamed-Frank M, Terzic A, Carrasco AJ, Nevo E, Avivi A, Levy AP (2001) Reciprocal regulation of expression of pore-forming KATP channel genes by hypoxia. Mol Cell Biochem 225:145–150CrossRefPubMedGoogle Scholar
  43. 43.
    Wang L, Zhu QL, Wang GZ, Deng TZ, Chen R, Liu MH, Wang SW (2011) The protective roles of mitochondrial ATP-sensitive potassium channels during hypoxia-ischemia-reperfusion in brain. Neurosci Lett 491:63–67CrossRefPubMedGoogle Scholar
  44. 44.
    Dong YF, Wang LX, Huang X, Cao WJ, Lu M, Ding JH, Sun XL, Hu G (2013) Kir6.1 knockdown aggravates cerebral ischemia/reperfusion-induced neural injury in mice. CNS Neurosci Ther 19:617–624CrossRefPubMedGoogle Scholar
  45. 45.
    Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 12:723–725CrossRefPubMedGoogle Scholar
  46. 46.
    Stoller D, Kakkar R, Smelley M, Chalupsky K, Earley JU, Shi NQ, Makielski JC, McNally EM (2007) Mice lacking sulfonylurea receptor 2 (SUR2) ATP-sensitive potassium channels are resistant to acute cardiovascular stress. J Mol Cell Cardiol 43:445–454CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Takaba H, Nagao T, Yao H, Kitazono T, Ibayashi S, Fujishima M (1997) An ATP-sensitive potassium channel activator reduces infarct volume in focal cerebral ischemia in rats. Am J Physiol 273:R583–R586PubMedGoogle Scholar
  48. 48.
    Gross GJ, Gauthier KM, Moore J, Falck JR, Hammock BD, Campbell WB, Nithipatikom K (2008) Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. Am J Physiol Heart Circ Physiol 294:H2838–H2844CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Mabuchi T, Lucero J, Feng A, Koziol JA, del Zoppo GJ (2005) Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab 25:257–266CrossRefPubMedGoogle Scholar
  50. 50.
    Palomares SM, Cipolla MJ (2011) Vascular protection following cerebral Ischemia and reperfusion. J Neurol Neurophysiol 2011: S1–004Google Scholar
  51. 51.
    Perez Velazquez JL, Kokarovtseva L, Sarbaziha R, Jeyapalan Z, Leshchenko Y (2006) Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage. Eur J Neurosci 23:1–10CrossRefPubMedGoogle Scholar
  52. 52.
    Fang X, Chen P, Moore SA (2002) The oxygen radical scavenger pyrrolidine dithiocarbamate enhances interleukin-1beta-induced cyclooxygenase-2 expression in cerebral microvascular smooth muscle cells. Microvasc Res 64:405–413CrossRefPubMedGoogle Scholar
  53. 53.
    Kumar S, Kain V, Sitasawad SL (2012) High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta 1820:907–920CrossRefPubMedGoogle Scholar
  54. 54.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91CrossRefPubMedGoogle Scholar
  55. 55.
    Takagi K, Ginsberg MD, Globus MY, Dietrich WD, Martinez E, Kraydieh S, Busto R (1993) Changes in amino acid neurotransmitters and cerebral blood flow in the ischemic penumbral region following middle cerebral artery occlusion in the rat: correlation with histopathology. J Cereb Blood Flow Metabol 13:575–585CrossRefGoogle Scholar
  56. 56.
    Memezawa H, Minamisawa H, Smith ML, Siesjo BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89:67–78CrossRefPubMedGoogle Scholar
  57. 57.
    Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1046; discussion 1047Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.Department of NeurologyLaizhou People’s HospitalLaizhouPeople’s Republic of China

Personalised recommendations