Neurochemical Research

, Volume 39, Issue 11, pp 2262–2275 | Cite as

GM1 Ganglioside Activates ERK1/2 and Akt Downstream of Trk Tyrosine Kinase and Protects PC12 Cells Against Hydrogen Peroxide Toxicity

  • Irina O. Zakharova
  • Tatyana V. Sokolova
  • Yulia A. Vlasova
  • Victor V. Furaev
  • Maria P. Rychkova
  • Natalia F. Avrova
Original Paper


Ganglioside GM1 at micro- and nanomolar concentrations was shown to increase the viability of pheochromocytoma PC12 cells exposed to hydrogen peroxide and diminish the accumulation of reactive oxygen species and oxidative inactivation of Na+,K+-ATPase, the effects of micromolar GM1 being more pronounced than those of nanomolar GM1. These effects of GM1 were abolished by Trk receptor tyrosine kinase inhibitor and diminished by MEK1/2, phosphoinositide 3-kinase and protein kinase C inhibitors. Hydrogen peroxide activates Trk tyrosine kinase; Akt and ERK1/2 are activated downstream of this protein kinase. GM1 was found to activate Trk receptor tyrosine kinase in PC12 cells. GM1 (100 nM and 10 µM) increased the basal activity of Akt, but did not change Akt activity in cells exposed to hydrogen peroxide. Basal ERK1/2 activity in PC12 cells was increased by GM1 at a concentration of 10 µM, but not at nanomolar concentrations. Activation of ERK1/2 by hydrogen peroxide was enhanced by GM1 at a concentration of 10 µM and to a lesser extent at a concentration of 100 nM. Thus, the protective and metabolic effects of GM1 ganglioside on PC12 cells exposed to hydrogen peroxide appear to depend on the activation of Trk receptor tyrosine kinase and downstream activation of Akt and ERK1/2.


GM1 ganglioside ERK1/2 Akt Activation Protection PC12 cells 



The work was supported by Grants from the Russian Fund for Basic Research 13-04-00643. The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Olmez I, Ozyurt H (2012) Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int 60:208–212PubMedCrossRefGoogle Scholar
  2. 2.
    Li J, OW, Li W, Jiang ZG, Ghanbari HA (2013) Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14:24438–24475Google Scholar
  3. 3.
    Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013:484613Google Scholar
  4. 4.
    Miller ER, Pastor-Barriuso R, Dalal D, Riemersma R, Appel LJ, Guallar E (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142:37–46PubMedCrossRefGoogle Scholar
  5. 5.
    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention. Systematic review and meta-analysis. J Am Med Assoc 297:842–857CrossRefGoogle Scholar
  6. 6.
    Vauzour D, Vafeiadou K, Rice-Evans C, Williams RJ, Spencer JP (2007) Activation of pro-survival Akt and ERK 1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J Neurochem 103:1355–1367PubMedCrossRefGoogle Scholar
  7. 7.
    Mancuso C, Bates TE, Butterfield DA, Calafato S, Comelius C, De Lorenzo A, Dinkova-Kostova AT, Calabrese V (2007) Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 16:1921–1931PubMedCrossRefGoogle Scholar
  8. 8.
    Abdul HM, Butterfield DA (2007) Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-l-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implication for Alzheimer’s disease. Free Radic Biol Med 42:371–384PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kulebyakin K, Karpova L, Lakonsteva E, Krasavin M, Boldyrev A (2012) Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling. Amino Acids 43:91–96PubMedCrossRefGoogle Scholar
  10. 10.
    Simao F, Matte A, Pagnussat AS, Netto CA, Salbego CG (2012) Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways. Eur J Neurosci 36:2899–28905PubMedCrossRefGoogle Scholar
  11. 11.
    Tyurin VA, Tyurina YY, Avrova NF (1992) Ganglioside-dependent factor, inhibiting lipid peroxidation in rat brain synaptosomes. Neurochem Int 20:401–407PubMedCrossRefGoogle Scholar
  12. 12.
    Avrova NF, Victorov IV, Tyurin VA, Zakharova IO, Sokolova TV, Andreeva NA, Stelmaschuk EV, Tyurina YY, Gonchar VS (1998) Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes. Neurochem Res 23:945–952PubMedCrossRefGoogle Scholar
  13. 13.
    Avrova NF, Zakharova IO, Tyurin VA, Tyurina YY, Gamaley IA, Schepetkin IA (2002) Different metabolic effects of ganglioside GM1 in brain synaptosomes and phagocytic cells. Neurochem Res 27:751–759PubMedCrossRefGoogle Scholar
  14. 14.
    Fighera MR, Bonini JS, de Oliveira TG, Frussa-Filho R, Rocha JB, Dutra-Filho CS, Rubin MA, Mello CF (2003) GM1 ganglioside attenuates convulsions and thiobarbituric acid reactive substances production induced by intrastriatal injection of methylmalonic acid. Int J Biochem Cell Biol 35:465–473PubMedCrossRefGoogle Scholar
  15. 15.
    Fighera MR, Royes LF, Furian AF, Oliveira MS, Fiorenza NG, Frussa-Filho R, Petry JC, Coelho RC, Mello CF (2006) GM1 ganglioside prevents seizures, Na+, K+-ATP-ase activity inhibition and oxidative stress induced by glutaric acid and pentylenetetrazole. Neurobiol Dis 22:611–623PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto HA, Mohanan PV (2003) Ganglioside GT1b and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res 964:100–106PubMedCrossRefGoogle Scholar
  17. 17.
    Sergent O, Pereira M, Belhomme C, Chevanne M, Huc L, Lagadic-Gossmann D (2005) Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther 313:104–111PubMedCrossRefGoogle Scholar
  18. 18.
    Gorria M, Huc L, Sergent O, Rebillard A, Gaboriau F, Dimanche-Boitrel MT, Lagadic-Gossmann D (2006) Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport. Biochem Pharmacol 72:1343–1353PubMedCrossRefGoogle Scholar
  19. 19.
    Gavella M, Kveder M, Lipovac V, Juracin D, Filipovi-Vincekovic N (2007) Antioxidant properties of ganglioside micelles. Free Radic Res 41:1143–1150PubMedCrossRefGoogle Scholar
  20. 20.
    Gavella M, Lipovac V (2013) Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa. Asian J Androl 15:375–381PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hadjiconstantinou M, Neff NH (1998) GM1 ganglioside: in vivo and in vitro trophic actions on central neurotransmitter systems. J Neurochem 70:1335–1345PubMedCrossRefGoogle Scholar
  22. 22.
    Sautter J, Hoglinger GU, Oertel WH, Earl CD (2000) Systemic treatment with GM1 ganglioside improves survival and function of cryopreserved embryonic midbrain grafted to the 6-hydroxydopamine-lesioned striatum. Exp Neurol 164:121–129PubMedCrossRefGoogle Scholar
  23. 23.
    She JQ, Wang M, Zhu DM, Tang M, Chen JT, Wang L, Ruan DY (2009) Monosialoanglioside (GM1) prevents lead-induced neurotoxicity on long-term potentiation, SOD activity, MDA levels, and intracellular calcium levels of hippocampus in rats. Naunyn Schmiedebergs Arch Pharmacol 379:517–524PubMedCrossRefGoogle Scholar
  24. 24.
    Avrova NF, Sokolova TV, Vlasova YA, Zakharova IO, Furaev VV, Rychkova MP (2010) Protective and antioxidative effects of GM1 ganglioside in PC12 cells exposed to hydrogen peroxide are mediated by Trk tyrosine kinase. Neurochem Res 35:85–98PubMedCrossRefGoogle Scholar
  25. 25.
    Ohmi Y, Tajima O, Ohkawa Y, Yamauchi Y, Sugiura Y, Furukawa K, Furukawa K (2011) Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem 116:926–935PubMedCrossRefGoogle Scholar
  26. 26.
    Geisler FH, Coleman WP, Grieco G, Poonian D; Sygen Study Group (2001) The Sygen multicenter acute spinal cord injury study. Spine 26(24 Suppl.):S87–S98Google Scholar
  27. 27.
    Candelise L, Ciccone A (2002) Gangliosides for acute ischemic stroke. Stroke 33:2336PubMedCrossRefGoogle Scholar
  28. 28.
    Becker D, Sadowsky CL, McDonald JW (2003) Restoring function after spinal cord injury. Neurologist 9:1–15PubMedCrossRefGoogle Scholar
  29. 29.
    Wahlgren NG, Ahmed N (2004) Neuroprotection in cerebral ischemia: facts and fancies—the need for new approaches. Cerebrovasc Dis 17(Suppl1):153–166PubMedCrossRefGoogle Scholar
  30. 30.
    Augustinsson LE, Blennow K, Blomstrand C, Bråne G, Ekman R, Fredman P, Karlsson I, Kihlgren M, Lehmann W, Lekman A, Månsson JE, Ramström I, Wallin A, Wikkelsö C, Gottfries CG, Svennerholm L (1997) Intracerebroventricular administration of GM1 ganglioside to presenile Alzheimer patients. Dement Geriatr Cogn Disord 8:26–33PubMedCrossRefGoogle Scholar
  31. 31.
    Svennerholm L, Brane G, Karlsson I, Lekman A, Ramström I, Wikkelsö C (2002) Alzheimer disease—effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme. Dement Geriatr Cogn Disord 14:128–136PubMedCrossRefGoogle Scholar
  32. 32.
    Schneider JS, Sendek S, Daskalakis C, Cambi F (2010) GM1 ganglioside in Parkinson’s disease: results of a five year open study. J Neurol Sci 292:45–51PubMedCrossRefGoogle Scholar
  33. 33.
    Bachis A, Rabin SJ, Del Fiacco M, Mocchetti I (2002) Gangliosides prevent excitotoxicity through activation of TrkB receptor. Neurotox Res 4:225–234PubMedCrossRefGoogle Scholar
  34. 34.
    Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrari G, Greene LA (1998) Promotion of neuronal survival by GM1 ganglioside. Phenomenology and mechanism of action. Ann NY Acad Sci 845:263–273PubMedCrossRefGoogle Scholar
  36. 36.
    Duchemin AM, Ren Q, Mo L, Neff NH, Hadjiconstantinou M (2002) GM1 ganglioside induces phosphorylation and activation of Trk and ERK in brain. J Neurochem 81:696–707PubMedCrossRefGoogle Scholar
  37. 37.
    Duchemin AM, Ren Q, Neff NH, Hadjiconstantinou M (2008) GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors. J Neurochem 104:1466–1477PubMedCrossRefGoogle Scholar
  38. 38.
    Davidsson P, Fredman P, Mansson JE, Svennerholm L (1991) Determination of gangliosides and sulfatide in human cerebrospinal fluid with a microimmunoaffinity technique. Clin Chim Acta 197:105–116PubMedCrossRefGoogle Scholar
  39. 39.
    Blennow K, Davidsson P, Wallin A, Fredman P, Gattfries CG, Mansson JE, Svennerholm L (1992) Differences in cerebrospinal fluid gangliosides between “probable” Alzheimer disease and normal aging. Aging 4:301–306PubMedGoogle Scholar
  40. 40.
    Ryu BR, Choi DW, Hartley DM et al (1999) Attenuation of cortical neuronal apoptosis by gangliosides. J Pharmacol Exp Ther 290:811–816PubMedGoogle Scholar
  41. 41.
    Choi JS, Kim JA, Joo CK (2003) Activation of MAPK and CREB by GM1 induces survival of RGCs in the retina with axotomized nerve. Invest Ophtamol Vis Sci 44:1747–1752CrossRefGoogle Scholar
  42. 42.
    Vassault A (1983) Lactate dehydrogenase: UV-method with pyruvate and NADH. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 3. Verlag Chemie, Weinheim, pp 118–126Google Scholar
  43. 43.
    Café C, Torri C, Bertorelli L, Tartara F, Tancioni F, Gaetani P, Rodriguez y Baena R, Marzatico F (1995) Oxidative events in neuronal and glial cell-enriched fractions of rat cerebral cortex. Free Radic Biol Med 19:853–885PubMedCrossRefGoogle Scholar
  44. 44.
    Leon A, Facci L, Toffano G, Sonnino S, Tettamanti G (1981) Activation of Na+, K+-ATP-ase by nanomolar concentrations of GM1 ganglioside. J Neurochem 37:350–357PubMedCrossRefGoogle Scholar
  45. 45.
    Chiarugi P, Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28:509–514PubMedCrossRefGoogle Scholar
  46. 46.
    Huang YZ, McNamara JO (2012) Neuroprotective effects of reactive oxygen species mediated by BDNF-independent activation of TrkB. J Neurosci 32:15521–15532PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Truong TH, Carroll KS (2013) Redox regulation of protein kinases. Crit Rev Biochem Mol Biol 48:332–356PubMedCrossRefGoogle Scholar
  48. 48.
    Zakharova IO, Sokolova TV, Avrova NF (2013) α-Tocopherol prevents ERK1/2 activation in PC12 cells under conditions of oxidative stress and its contribution to the protective effect. Bull Exp Biol Med 155:44–47PubMedCrossRefGoogle Scholar
  49. 49.
    Luo Y, DeFranco DB (2006) Opposing roles for ERK 1/2 in neuronal oxidative toxicity: distinct mechanisms of ERK 1/2 action at early versus late phases of oxidative stress. J Biol Chem 281:16436–16442PubMedCrossRefGoogle Scholar
  50. 50.
    Vlasova YA, Zakharova IO, Sokolova TV, Furaev VV, Rychkova MP, Avrova NF (2009) Role of tyrosine kinase of Trk receptors in realization of antioxidant effect of ganglioside GM1 in PC12 cells. J Evol Biochem Physiol 45:465–471CrossRefGoogle Scholar
  51. 51.
    Braylovskaya IV, Sokolova TV, Kobilyanskii AG, Avrova NF (2014) Effect of GM1 ganglioside on mitochondrial respiration and viability of PC12 cells under oxidative stress conditions. J Evol Biochem Physiol 50:174–176CrossRefGoogle Scholar
  52. 52.
    Hsuan SL, Klintworth HM, Xia Z (2006) Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidyl inositol-3 kinase pathways. J Neurosci 26:4448–4491CrossRefGoogle Scholar
  53. 53.
    Chung H, Seo S, Moon M, Park S (2008) Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3 beta and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J Endocrinol 198:511–521PubMedCrossRefGoogle Scholar
  54. 54.
    Liu RL, Xiong QJ, Shu Q, Wu WW, Cheng J, Fu H, Wang F, Chen JG, Hu ZL (2012) Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway. Brain Res 1469:164–173PubMedCrossRefGoogle Scholar
  55. 55.
    Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW 2nd, O’Rourke B, Kitsis RN (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA 109:6566–6571PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Tischner D, Manzl C, Soratroi C, Villunger A, Krumschnabel G (2012) Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17:1197–11209PubMedCrossRefGoogle Scholar
  57. 57.
    Chan JY, Chang AY, Wang LL, Ou CC, Chan SH (2007) Protein kinase C-dependent mitochondrial translocation of proapoptotic protein Bax on activation of inducible nitric-oxide synthase in rostral ventrolateral medulla mediates cardiovascular depression during experimental endotoxemia. Mol Pharmacol 71:1129–1139PubMedCrossRefGoogle Scholar
  58. 58.
    Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G (2009) Adenine nucleotide translocase: a component of the phylogenetically conserved death machinery. Cell Death Differ 18:1419–1425CrossRefGoogle Scholar
  59. 59.
    Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kirkland RA, Saavedra GM, Cummings BS, Franklin JL (2010) Bax regulates production of superoxide in both apoptotic and nonapoptotic neurons: role of caspases. J Neurosci 30(48):16114–16127PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Irina O. Zakharova
    • 1
  • Tatyana V. Sokolova
    • 1
  • Yulia A. Vlasova
    • 1
  • Victor V. Furaev
    • 1
  • Maria P. Rychkova
    • 1
  • Natalia F. Avrova
    • 1
  1. 1.Department of Comparative NeurochemistryI.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of SciencesSaint PetersburgRussian Federation

Personalised recommendations