Advertisement

Neurochemical Research

, Volume 39, Issue 9, pp 1681–1690 | Cite as

The Protective Effect of N-Acetylcysteine on Oxidative Stress in the Brain Caused by the Long-Term Intake of Aspartame by Rats

  • Isabela A. Finamor
  • Giovana M. Ourique
  • Tanise S. Pês
  • Etiane M. H. Saccol
  • Caroline A. Bressan
  • Taína Scheid
  • Bernardo Baldisserotto
  • Susana F. Llesuy
  • Wânia A. Partata
  • Maria A. PavanatoEmail author
Original Paper

Abstract

Long-term intake of aspartame at the acceptable daily dose causes oxidative stress in rodent brain mainly due to the dysregulation of glutathione (GSH) homeostasis. N-Acetylcysteine provides the cysteine that is required for the production of GSH, being effective in treating disorders associated with oxidative stress. We investigated the effects of N-acetylcysteine treatment (150 mg kg−1, i.p.) on oxidative stress biomarkers in rat brain after chronic aspartame administration by gavage (40 mg kg−1). N-Acetylcysteine led to a reduction in the thiobarbituric acid reactive substances, lipid hydroperoxides, and carbonyl protein levels, which were increased due to aspartame administration. N-Acetylcysteine also resulted in an elevation of superoxide dismutase, glutathione peroxidase, glutathione reductase activities, as well as non-protein thiols, and total reactive antioxidant potential levels, which were decreased after aspartame exposure. However, N-acetylcysteine was unable to reduce serum glucose levels, which were increased as a result of aspartame administration. Furthermore, catalase and glutathione S-transferase, whose activities were reduced due to aspartame treatment, remained decreased even after N-acetylcysteine exposure. In conclusion, N-acetylcysteine treatment may exert a protective effect against the oxidative damage in the brain, which was caused by the long-term consumption of the acceptable daily dose of aspartame by rats.

Keywords

N-Acetylcysteine Protective Aspartame Brain Oxidative damage Glutathione 

Notes

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Tecnológico (CNPq), to the Comissão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and to the Fundo de Incentivo a Pesquisa da Universidade Federal de Santa Maria (FIPE-UFSM).

References

  1. 1.
    Butchko HH, Stargel WW, Comer CP, Mayhew DA, Benninger C, Blackburn GL, Sonneville LM, Geha RS, Hertelendy Z, Koestner A, Leon AS, Liepa GU, McMartin KE, Mendenhall CL, Munro IC, Novotny EJ, Renwick AG, Schiffman SS, Schomer DL, Shaywitz BA, Spiers PA, Tephly TR, Thomas JA, Trefz FK (2002) Aspartame: review of safety. Regul Toxicol Pharmacol 35:S1–S93PubMedCrossRefGoogle Scholar
  2. 2.
    Oyama Y, Sakai H, Arata T, Okano Y, Akaike N, Sakai K, Noda K (2002) Cytotoxic effects of methanol, formaldehyde, and formate on dissociated rat thymocytes: a possibility of aspartame toxicity. Cell Biol Toxicol 18:43–50PubMedCrossRefGoogle Scholar
  3. 3.
    Humphries P, Pretorius E, Naudé H (2008) Direct and indirect cellular effects of aspartame on the brain. Eur J Clin Nutr 62:451–462PubMedCrossRefGoogle Scholar
  4. 4.
    Ranney RE, Oppermann JA, Muldoon E, McMahon FG (1976) Comparative metabolism of aspartame in experimental animals and humans. J Toxicol Environ Health 2:441–451PubMedCrossRefGoogle Scholar
  5. 5.
    Krebs MO (1992) Excitatory amino acids: a new class of neurotransmitters: pharmacology and functional properties. Encephale 18:271–279PubMedGoogle Scholar
  6. 6.
    Fernstrom JD, Fernstrom MH, Gillis MA (1983) Acute effects of aspartame on large neutral amino acid and mono-amines in rat brain. Life Sci 32:1651–1658PubMedCrossRefGoogle Scholar
  7. 7.
    Massachusetts Medical Society (1984) Evaluation of consumer complaints related to aspartame use. Morb Mortal Wkly Rep 33:605–607Google Scholar
  8. 8.
    Stegink LD, Brummel MC, Filer LJ, Baker GL (1983) Blood methanol concentrations in one year old infants administered graded doses of aspartame. J Nutr 113:1600–1606PubMedGoogle Scholar
  9. 9.
    Trocho C, Pardo R, Rafecas I, Virgili J, Remesar X, Fernández-López JA, Amemany M (1998) Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sci 63:337–349PubMedCrossRefGoogle Scholar
  10. 10.
    European Food Safety Authority (2006) EFSA assesses new aspartame study and reconfirms its safety. European Food Safety Authority, BolognaGoogle Scholar
  11. 11.
    Mourad IM, Noor NA (2011) Aspartame (a widely used artificial sweetener) and oxidative stress in the rat cerebral cortex. Int J Pharm Biomed Sci 2:4–10Google Scholar
  12. 12.
    Abdel-Salam OME, Salem NA, El-Shamarka MES, Hussein JS, Ahmed NAS, El-Nagar MES (2012) Studies on the effects of aspartame on memory and oxidative stress in brain of mice. Eur Rev Med Pharmacol Sci 16:2092–2210PubMedGoogle Scholar
  13. 13.
    Abhilash M, Sauganth PMV, Varghese MV, Nair RH (2013) Long-term consumption of aspartame and brain antioxidant defense status. Drug Chem Toxicol 36:135–140PubMedCrossRefGoogle Scholar
  14. 14.
    Iyyaswamy A, Rathinasamy S (2012) Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats. J Biosci 37:679–688PubMedCrossRefGoogle Scholar
  15. 15.
    Ruiz NAL, Mejía AV, Hernández-Martínez NL, Gómez-Garduño J, Dorado-González VM, Osnaya-Brizuela N, García-Álvarez R, Barragán-Mejía G, Guzmán DC (2008) Efecto de aspartame, fenilalanina y ácido aspártico sobre los niveles de glutatión y peroxidación de lípidos en cérebro de rata. Arch Neurocien (Mex) 13:79–83Google Scholar
  16. 16.
    Farbiszewski R, Witek A, Skrzydlewska E (2000) N-Acetylcysteine or trolox derivate mitigate the toxic effects of methanol on the antioxidant system of rat brain. Toxicology 156:47–55PubMedCrossRefGoogle Scholar
  17. 17.
    Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830:4117–4129PubMedCrossRefGoogle Scholar
  18. 18.
    Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang ZY, Woollard ACS, Wolff SP (1991) Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipid 26:853–856CrossRefGoogle Scholar
  20. 20.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–309PubMedCrossRefGoogle Scholar
  21. 21.
    Reznick AZ, Packer L (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:357–363PubMedCrossRefGoogle Scholar
  22. 22.
    Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  23. 23.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–625PubMedGoogle Scholar
  24. 24.
    Flohé L, Gunzler WA (1984) Assays of glutathione peroxidase. In: Packer L (ed) Methods in enzymology. Academic Press, San Diego, pp 114–121Google Scholar
  25. 25.
    Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–499PubMedCrossRefGoogle Scholar
  26. 26.
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139PubMedGoogle Scholar
  27. 27.
    Ellman L (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77PubMedCrossRefGoogle Scholar
  28. 28.
    Roe JH, Kuether CA (1942) A color reaction for dehydroascorbic acid useful in the determination of vitamin C. Science 95:77PubMedCrossRefGoogle Scholar
  29. 29.
    Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266PubMedCrossRefGoogle Scholar
  30. 30.
    Lowry OH, Rosebrough MJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193:265–269PubMedGoogle Scholar
  31. 31.
    Kim JY, Seo J, Cho KH (2011) Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food Chem Toxicol 49:2899–2905PubMedCrossRefGoogle Scholar
  32. 32.
    Collison KS, Makhoul NJ, Zaidi MZ, Al-Rabiah R, Inglis A, Andres BL, Ubungen R, Shoukri M, Al-Mohanna FA (2012) Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr Metab (Lond) 9:58CrossRefGoogle Scholar
  33. 33.
    Ferland A, Brassard P, Poirier P (2007) Is aspartame really safer in reducing the risk of hypoglycemia during exercise in patients with type 2 diabetes? Diabetes Care 30:e59PubMedCrossRefGoogle Scholar
  34. 34.
    Nuttall FQ, Schweim KJ, Gannon MC (2006) Effect of orally administered phenylalanine with and without glucose on insulin, glucagon and glucose concentrations. Horm Metab Res 38:518–523PubMedCrossRefGoogle Scholar
  35. 35.
    Piccardo MG, Rosa M, Russo L (1983) The effects of a load of phenylalanine on glucose metabolism. Boll Soc Ital Bio Sper 59:167–170Google Scholar
  36. 36.
    Christian B, McConnaughey K, Bethea E, Brantley S, Coffey A, Hammond L, Harrell S, Metcalf K, Muehlenbein D, Spruil W, Brinson L, McConnaughey M (2004) Chronic aspartame affects T-maze performance, brain cholinergic receptors and Na+K+-ATPase in rats. Pharmacol Biochem Behav 78:121–127PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi A, Kishi E, Ishimaru H, Ikarashi Y, Maruyama Y (1998) Stimulation of rat hypothalamus by microdialysis with K + : increase of ACh release elevates plasma glucose. Am J Physiol 275:R1647–R1653PubMedGoogle Scholar
  38. 38.
    Shigeta H, Yoshida T, Nakai M, Mori H, Nishioka H, Kajiyama S, Kitagawa Y, Kanatsuna T, Kondo M (1985) Effects of aspartame on diabetic rats and diabetic patients. J Nutr Sci Vitaminol (Tokyo) 31:533–540CrossRefGoogle Scholar
  39. 39.
    Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716PubMedCrossRefGoogle Scholar
  40. 40.
    Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2008) l-cysteine and glutathione restore the modulation of rat frontal cortex Na+, K+-ATPase activity induced by aspartame metabolites. Food Chem Toxicol 46:2074–2079PubMedCrossRefGoogle Scholar
  41. 41.
    Finamor IA, Saccol EM, Gabriel D, Ourique GM, Riffel AP, Konrad SP, Belló-Klein A, Partata W, Baldisserotto B, Llesuy SF, Pavanato MA (2012) Effects of parboiled rice diet on oxidative stress parameters in kidney of rats with streptozotocin-induced diabetes. J Med Food 15:598–604PubMedCrossRefGoogle Scholar
  42. 42.
    Rice ME, Russo-Menna I (1998) Differential compartmentalization of brain ascorbate and glutathione between neuron and glia. Neuroscience 82:1213–1223PubMedCrossRefGoogle Scholar
  43. 43.
    Skrzydlewska E, Witek A, Farbiszewski R (1998) The comparison of the antioxidant defense potential of brain to liver of rats after methanol ingestion. Comp Biochem Physiol C 120:289–294PubMedCrossRefGoogle Scholar
  44. 44.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New YorkGoogle Scholar
  45. 45.
    Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 15:283–297CrossRefGoogle Scholar
  46. 46.
    Jain A, Mårtensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    De Flora S, Bennicelli C, Camoirano A, Serra D, Romano M, Rossi GA, Morelli A, De Flora A (1985) In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and or mutagenic compounds. Carcinogenesis 6:1735–1745PubMedCrossRefGoogle Scholar
  48. 48.
    Yang Y, Cheng JZ, Singhal SS, Saini M, Pandya U, Awasthi S (2001) Role of glutathione S-transferase in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem 276:19220–19230PubMedCrossRefGoogle Scholar
  49. 49.
    Simintzi I, Schulpis KH, Angelogianni P, Liapi C, Tsakiris S (2007) l-cysteine and glutathione restore the reduction of rat hippocampal Na+, K+-ATPase activity induced by aspartame metabolites. Toxicology 237:177–183PubMedCrossRefGoogle Scholar
  50. 50.
    Meister A (1983) Selective modification of glutathione metabolism. Science 220:472–477PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Isabela A. Finamor
    • 1
  • Giovana M. Ourique
    • 1
  • Tanise S. Pês
    • 1
  • Etiane M. H. Saccol
    • 1
  • Caroline A. Bressan
    • 1
  • Taína Scheid
    • 2
  • Bernardo Baldisserotto
    • 1
  • Susana F. Llesuy
    • 3
  • Wânia A. Partata
    • 2
  • Maria A. Pavanato
    • 1
    Email author
  1. 1.Department of Physiology and PharmacologyFederal University of Santa Maria (UFSM)Santa MariaBrazil
  2. 2.Department of PhysiologyFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  3. 3.Department of Analytical Chemistry and Physical ChemistryUniversity of Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations