Neurochemical Research

, Volume 39, Issue 2, pp 344–352 | Cite as

1,8-Cineole (Eucalyptol) Mitigates Inflammation in Amyloid Beta Toxicated PC12 Cells: Relevance to Alzheimer’s Disease

  • Andleeb Khan
  • Kumar Vaibhav
  • Hayate Javed
  • Rizwana Tabassum
  • Md. Ejaz Ahmed
  • Mohd. Moshahid Khan
  • M. Badruzzaman Khan
  • Pallavi Shrivastava
  • Farah Islam
  • M. Saeed Siddiqui
  • M. M. Safhi
  • Fakhrul Islam
Original Paper

Abstract

Inflammatory process has a fundamental role in the pathogenesis of Alzheimer’s disease and insoluble amyloid beta deposits and neurofibrillary tangles provide the obvious stimuli for inflammation. The present study demonstrate the effect of pretreatment of 1,8-cineole (Cin) on inflammation induced by Aβ(25–35) in differentiated PC12 cells. The cells were treated with Cin at different doses for 24 h and then replaced by media containing Aβ(25–35) for another 24 h. The cell viability was decreased in Aβ(25–35) treated cells which was significantly restored by Cin pretreatment. Cin successfully reduced the mitochondrial membrane potential, ROS and NO levels in Aβ(25–35) treated cells. Cin also lowered the levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 in Aβ(25–35) treated cells. Moreover, Cin also succeeded in lowering the expression of NOS-2, COX-2 and NF-κB. This study suggests the protective effects of Cin on inflammation and provides additional evidence for its potential beneficial use in therapy as an anti-inflammatory agent in neurodegenerative disease.

Keywords

Cineole Amyloid beta (Aβ25–35NOS-2 COX-2 NF-κB Cytokines 

References

  1. 1.
    Wimo A, Jonsson L, Winblad B (2006) An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement Geriatr 21(3):175–181CrossRefGoogle Scholar
  2. 2.
    Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122PubMedCrossRefGoogle Scholar
  3. 3.
    Couturier J, Paccalin M, Morel M, Terro F, Milin S, Pontcharraud R, Fauconneau B, Page G (2011) Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures. J Neuroinflamm 8:72CrossRefGoogle Scholar
  4. 4.
    Bakshi P, Margenthaler E, Laporte V, Crawford F, Mullan M (2008) Novel role of CXCR2 in regulation of gamma-secretase activity. ACS Chem Biol 3(12):777–789PubMedCrossRefGoogle Scholar
  5. 5.
    Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS (2004) Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem 279(47):49523–49532PubMedCrossRefGoogle Scholar
  6. 6.
    Juergens UR, Stober M, Vetter H (1998) Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1,8-cineole) in human blood monocytes in vitro. Eur J Med Res 3(11):508–510PubMedGoogle Scholar
  7. 7.
    Juergens UR, Stober M, Schmidt-Schilling L, Kleuver T, Vetter H (1998) Antiinflammatory effects of eucalyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res 3(9):407–412PubMedGoogle Scholar
  8. 8.
    Santos FA, Rao VS (2000) Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 14(4):240–244PubMedCrossRefGoogle Scholar
  9. 9.
    Juergens UR, Engelen T, Racké K, Stöber M, Gillissen A, Vetter H (2004) Inhibitory activity of 1,8 cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther 17(5):281–287PubMedCrossRefGoogle Scholar
  10. 10.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  11. 11.
    Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H (2011) Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 27(5):447-453Google Scholar
  12. 12.
    Hochstrasser T, Hohsfield LA, Sperner-Unterweger B, Humpel C (2012) β-Amyloid induced effects on cholinergic, serotonergic, and dopaminergic neurons is differentially counteracted by anti-inflammatory drugs. J Neurosci Res 91(1):83–94PubMedGoogle Scholar
  13. 13.
    Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1–2):69–91PubMedCrossRefGoogle Scholar
  14. 14.
    Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305PubMedCrossRefGoogle Scholar
  15. 15.
    Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000) Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 14(1):S47–S53PubMedCrossRefGoogle Scholar
  16. 16.
    Griffin WST, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI et al (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8(1):65–72PubMedCrossRefGoogle Scholar
  17. 17.
    Mrak RE, Sheng JG, Griffin WS (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum Pathol 26(8):816–823PubMedCrossRefGoogle Scholar
  18. 18.
    Griffin WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci USA 86(19):7611–7615PubMedCrossRefGoogle Scholar
  19. 19.
    Griffin ST, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 (IL-1) expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54(2):276–281PubMedCrossRefGoogle Scholar
  20. 20.
    Stoll G, Jander S, Schroeter M (2000) Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm 59:81–89Google Scholar
  21. 21.
    Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 7(1):75–83PubMedCrossRefGoogle Scholar
  22. 22.
    Hull M, Fiebich BL, Lieb K, Strauss S, Berger SS, Volk B, Bauer J (1996) Interleukin-6-associated inflammatory processes in Alzheimer’s disease: new therapeutic options. Neurobiol Aging 17(5):795–800PubMedGoogle Scholar
  23. 23.
    Serafino A, Vallebona PS, Andreola F, Zonfrillo M, Mercuri L, Federici M, Rasi G, Garaci E, Pierimarchi P (2008) Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response. BMC Immunol 9:17PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Bales KR, Du Y, Holtzman D, Cordell B, Paul SM (2000) Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Ab-induced glial activation, NF-kB, and apolipoprotein E. Neurobiol Aging 21(3):427–432PubMedCrossRefGoogle Scholar
  25. 25.
    Akama KT, Albanese C, Pestell RG, Van Eldik LJ (1998) Amyloid b-peptide stimulates nitric oxide production in astrocytes through an NFkB-dependent mechanism. Proc Natl Acad Sci USA 95(10):5795–5800PubMedCrossRefGoogle Scholar
  26. 26.
    Giuffre A, Sarti P, D’Itri E, Buse G, Soulimane T, Brunori M (1996) On the mechanism of inhibition of cytochrome c oxidase by nitric oxide. J Biol Chem 271(52):33404–33408PubMedCrossRefGoogle Scholar
  27. 27.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658PubMedCrossRefGoogle Scholar
  28. 28.
    Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28(51):13957–13966PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Khan A, Vaibhav K, Javed H, Khan MM, Tabassum R, Ahmed ME, Khuwaja G, Islam F, Siddiqui MS, Shafi MM, Islam F (2012) Attenuation of Aβ-induced neurotoxicity by thymoquinone via inhibition of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem 369(1–2):55–65PubMedCrossRefGoogle Scholar
  30. 30.
    Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61(7):1081–1093PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andleeb Khan
    • 1
    • 4
  • Kumar Vaibhav
    • 1
  • Hayate Javed
    • 1
    • 5
  • Rizwana Tabassum
    • 1
  • Md. Ejaz Ahmed
    • 1
  • Mohd. Moshahid Khan
    • 1
    • 6
  • M. Badruzzaman Khan
    • 1
    • 7
  • Pallavi Shrivastava
    • 1
    • 8
  • Farah Islam
    • 2
  • M. Saeed Siddiqui
    • 1
  • M. M. Safhi
    • 3
  • Fakhrul Islam
    • 1
    • 3
  1. 1.Neurotoxicology Laboratory, Department of Medical Elementology and ToxicologyJamia Hamdard (Hamdard University)New DelhiIndia
  2. 2.Department of Biotechnology, Faculty of PharmacyJamia Hamdard (Hamdard University)New DelhiIndia
  3. 3.Neuroscience and Toxicology Unit, Faculty of PharmacyJazan UniversityJazanKingdom of Saudi Arabia
  4. 4.Biomedical Research Unit, Medical Research CenterJazan UniversityJazanKingdom of Saudi Arabia
  5. 5.Department of Neurology, 200 Hawkins DriveUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  6. 6.Department of Neurology, Medical Research CentreUniversity of IowaIowa CityUSA
  7. 7.Center for Molecular Chaperone, 1410 Laney Walker Blvd. CN3141/21AMedical College of GeorgiaAugustaUSA
  8. 8.Department of NeurologyUMDNJ, Robert Wood Johanson Medical SchoolBrunswickUSA

Personalised recommendations