Neurochemical Research

, Volume 38, Issue 12, pp 2668–2677 | Cite as

Candesartan Reduces the Hemorrhage Associated with Delayed Tissue Plasminogen Activator Treatment in Rat Embolic Stroke

  • Tauheed Ishrat
  • Bindu Pillai
  • Adviye Ergul
  • Sherif Hafez
  • Susan C. Fagan
Original Paper


We have previously reported that angiotensin receptor blockade reduces reperfusion hemorrhage in a suture occlusion model of stroke, despite increasing matrix metalloproteinase (MMP-9) activity. We hypothesized that candesartan will also decrease hemorrhage associated with delayed (6 h) tissue plasminogen activator (tPA) administration after embolic stroke, widening the therapeutic time window of tPA. Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) and treated with either candesartan (1 mg/kg) alone early at 3 h, delayed tPA (10 mg/kg) alone at 6 h, the combination of candesartan and tPA, or vehicle control. Rats were sacrificed at 24 and 48 h post-eMCAO and brains perfused for evaluation of neurological deficits, cerebral hemorrhage in terms of hemoglobin content, occurrence rate of hemorrhage, infarct size, tissue MMP activity and protein expression. The combination therapy of candesartan and tPA after eMCAO reduced the brain hemorrhage, and improved neurological outcome compared with rats treated with tPA alone. Further, candesartan in combination with tPA increased activity of MMP-9 but decreased MMP-3, nuclear factor kappa-B and tumor necrosis factor-α expression and enhanced activation of endothelial nitric oxide synthase. An activation of MMP-9 alone is insufficient to cause increased hemorrhage in embolic stroke. Combination therapy with acute candesartan plus tPA may be beneficial in ameliorating tPA-induced hemorrhage after embolic stroke.


Candesartan Embolic stroke Matrix metalloproteinases Tissue plasminogen activator Hemorrhage 



Embolic middle cerebral artery occlusion


Tissue plasminogen activator




Nuclear factor kappa-B


Tumor necrosis factor-α


Phospho endothelial nitric oxide synthase


Matrix metalloproteinase


Angiotensin II type 1 receptor




2, 3, 5-triphenyltetrazolium chloride


Standard error of the mean


Cerebral blood flow


Hemorrhagic transformation


Low-density lipoprotein receptor-related protein


Blood brain-barrier


Nitric oxide


  1. 1.
    Goldstein LB (2007) Acute ischemic stroke treatment in 2007. Circulation 116:1504–1514PubMedCrossRefGoogle Scholar
  2. 2.
    Ishrat T, Soliman S, Guan W, Saler M, Fagan SC (2012) Vascular protection to increase the safety of tissue plasminogen activator for stroke. Curr Pharm Des 18:3677–3684PubMedCrossRefGoogle Scholar
  3. 3.
    Fagan SC, Hess DC, Machado LS, Hohnadel EJ, Pollock DM, Ergul A (2005) Tactics for vascular protection after acute ischemic stroke. Pharmacotherapy 25:387–395PubMedCrossRefGoogle Scholar
  4. 4.
    Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, Jahnig P, Herrmann M, Knauth M, Bahr M, Heide W, Wagner A, Schwab S, Reichmann H, Schwendemann G, Dengler R, Kastrup A, Bartels C (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke J Cereb Circ 40:e647–e656CrossRefGoogle Scholar
  5. 5.
    Jia L, Chopp M, Zhang L, Lu M, Zhang Z (2010) Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke J Cereb Circ 41:2071–2076CrossRefGoogle Scholar
  6. 6.
    Zechariah A, ElAli A, Hermann DM (2010) Combination of tissue-plasminogen activator with erythropoietin induces blood-brain barrier permeability, extracellular matrix disaggregation, and DNA fragmentation after focal cerebral ischemia in mice. Stroke J Cereb Circ 41:1008–1012CrossRefGoogle Scholar
  7. 7.
    Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, Lo EH (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med 9:1313–1317PubMedCrossRefGoogle Scholar
  8. 8.
    Pfefferkorn T, Rosenberg GA (2003) Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke J Cereb Circ 34:2025–2030CrossRefGoogle Scholar
  9. 9.
    Montaner J, Alvarez-Sabin J, Molina C, Angles A, Abilleira S, Arenillas J, Gonzalez MA, Monasterio J (2001) Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke J Cereb Circ 32:1759–1766CrossRefGoogle Scholar
  10. 10.
    Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339PubMedCrossRefGoogle Scholar
  11. 11.
    Romanic AM, Madri JA (1994) Extracellular matrix-degrading proteinases in the nervous system. Brain Pathol 4:145–156PubMedCrossRefGoogle Scholar
  12. 12.
    Grossetete M, Rosenberg GA (2008) Matrix metalloproteinase inhibition facilitates cell death in intracerebral hemorrhage in mouse. J cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 28:752–763CrossRefGoogle Scholar
  13. 13.
    Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742PubMedCrossRefGoogle Scholar
  14. 14.
    Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D (2005) Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 21:187–196PubMedCrossRefGoogle Scholar
  15. 15.
    Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, Santamarina E, Quintana M, Monasterio J, Montaner J (2004) Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke J cerebral circulation 35:1316–1322CrossRefGoogle Scholar
  16. 16.
    Suzuki Y, Nagai N, Umemura K, Collen D, Lijnen HR (2007) Stromelysin-1 (MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice. J Thromb Haemost 5:1732–1739PubMedCrossRefGoogle Scholar
  17. 17.
    Nishimura Y, Ito T, Saavedra JM (2000) Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke J Cereb Circ 31:2478–2486CrossRefGoogle Scholar
  18. 18.
    Awad AS (2011) Effect of combined treatment with curcumin and candesartan on ischemic brain damage in mice. J Stroke Cerebrovasc Dis 20:541–548PubMedCrossRefGoogle Scholar
  19. 19.
    Fu H, Hosomi N, Pelisch N, Nakano D, Liu G, Ueno M, Miki T, Masugata H, Sueda Y, Itano T, Matsumoto M, Nishiyama A, Kohno M (2011) Therapeutic effects of postischemic treatment with hypotensive doses of an angiotensin II receptor blocker on transient focal cerebral ischemia. J Hypertens 29:2210–2219PubMedCrossRefGoogle Scholar
  20. 20.
    Guan W, Kozak A, El-Remessy AB, Johnson MH, Pillai BA, Fagan SC (2011) Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res 2:179–185PubMedCrossRefGoogle Scholar
  21. 21.
    Guan W, Somanath PR, Kozak A, Goc A, El-Remessy AB, Ergul A, Johnson MH, Alhusban A, Soliman S, Fagan SC (2011) Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS ONE 6:e24551PubMedCrossRefGoogle Scholar
  22. 22.
    Kozak A, Ergul A, El-Remessy AB, Johnson MH, Machado LS, Elewa HF, Abdelsaid M, Wiley DC, Fagan SC (2009) Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke J Cereb Circ 40:1870–1876CrossRefGoogle Scholar
  23. 23.
    Elewa HF, Kozak A, Johnson MH, Ergul A, Fagan SC (2007) Blood pressure lowering after experimental cerebral ischemia provides neurovascular protection. J Hypertens 25:855–859PubMedCrossRefGoogle Scholar
  24. 24.
    Fagan SC, Kozak A, Hill WD, Pollock DM, Xu L, Johnson MH, Ergul A, Hess DC (2006) Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection. J Hypertens 24:535–539PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang RL, Chopp M, Zhang ZG, Jiang Q, Ewing JR (1997) A rat model of focal embolic cerebral ischemia. Brain Res 766:83–92PubMedCrossRefGoogle Scholar
  26. 26.
    Meng W, Wang X, Asahi M, Kano T, Asahi K, Ackerman RH, Lo EH (1999) Effects of tissue type plasminogen activator in embolic versus mechanical models of focal cerebral ischemia in rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 19:1316–1321CrossRefGoogle Scholar
  27. 27.
    Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH (2008) Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke J Cereb Circ 39:3372–3377CrossRefGoogle Scholar
  28. 28.
    Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke J Cereb Circ 17:472–476CrossRefGoogle Scholar
  29. 29.
    Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M, Molina CA, Lo EH, Montaner J (2006) Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke J Cereb Circ 37:1399–1406CrossRefGoogle Scholar
  30. 30.
    Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke J Cereb Circ 29:1020–1030CrossRefGoogle Scholar
  31. 31.
    Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki Y, Nagai N, Yamakawa K, Kawakami J, Lijnen HR, Umemura K (2009) Tissue-type plasminogen activator (t-PA) induces stromelysin-1 (MMP-3) in endothelial cells through activation of lipoprotein receptor-related protein. Blood 114:3352–3358PubMedCrossRefGoogle Scholar
  33. 33.
    Liu H, Kitazato KT, Uno M, Yagi K, Kanematsu Y, Tamura T, Tada Y, Kinouchi T, Nagahiro S (2008) Protective mechanisms of the angiotensin II type 1 receptor blocker candesartan against cerebral ischemia: in vivo and in vitro studies. J Hypertens 26:1435–1445PubMedCrossRefGoogle Scholar
  34. 34.
    Engelhorn T, Doerfler A, Heusch G, Schulz R (2006) Reduction of cerebral infarct size by the AT1-receptor blocker candesartan, the HMG-CoA reductase inhibitor rosuvastatin and their combination. An experimental study in rats. Neurosci Lett 406:92–96PubMedCrossRefGoogle Scholar
  35. 35.
    Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab Off J Int Soc Cerebral Blood Flow Metab 20:1681–1689CrossRefGoogle Scholar
  36. 36.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefGoogle Scholar
  37. 37.
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494PubMedCrossRefGoogle Scholar
  38. 38.
    Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M, Razhagi A, Miller K, Gearing A (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104–112PubMedCrossRefGoogle Scholar
  39. 39.
    Kelly-Cobbs AI, Prakash R, Li W, Pillai B, Hafez S, Coucha M, Johnson MH, Ogbi SN, Fagan SC, Ergul A (2013) Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes. Am J Physiol Heart Circ Physiol 304:H806–H815PubMedCrossRefGoogle Scholar
  40. 40.
    Jian Liu K, Rosenberg GA (2005) Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39:71–80PubMedCrossRefGoogle Scholar
  41. 41.
    Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G, Schulz R (2004) The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab Off J Int Soc Cerebral Blood Flow Metab 24:467–474CrossRefGoogle Scholar
  42. 42.
    Sutherland BA, Papadakis M, Chen RL, Buchan AM (2011) Cerebral blood flow alteration in neuroprotection following cerebral ischaemia. J Physiol 589:4105–4114PubMedCrossRefGoogle Scholar
  43. 43.
    Suzuki Y (2010) Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci 113:203–207PubMedCrossRefGoogle Scholar
  44. 44.
    Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8:1363–1368PubMedCrossRefGoogle Scholar
  45. 45.
    Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10:119–130PubMedCrossRefGoogle Scholar
  46. 46.
    Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 16:981–987CrossRefGoogle Scholar
  47. 47.
    Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC (1998) Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest 101:731–736PubMedCrossRefGoogle Scholar
  48. 48.
    Yamakawa H, Jezova M, Ando H, Saavedra JM (2003) Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 23:371–380CrossRefGoogle Scholar
  49. 49.
    Sanz-Rosa D, Oubina MP, Cediel E, de Las Heras N, Vegazo O, Jimenez J, Lahera V, Cachofeiro V (2005) Effect of AT1 receptor antagonism on vascular and circulating inflammatory mediators in SHR: role of NF-kappaB/IkappaB system. Am J Physiol Heart Circ Physiol 288:H111–H115PubMedCrossRefGoogle Scholar
  50. 50.
    Sandset EC, Bath PM, Boysen G, Jatuzis D, Korv J, Luders S, Murray GD, Richter PS, Roine RO, Terent A, Thijs V, Berge E (2011) The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet 377:741–750PubMedCrossRefGoogle Scholar
  51. 51.
    Alhusban A, Kozak A, Ergul A, Fagan SC (2013) AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol Exp Ther 344:348–359PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou J, Pavel J, Macova M, Yu ZX, Imboden H, Ge L, Nishioku T, Dou J, Delgiacco E, Saavedra JM (2006) AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke J Cereb Circ 37:1271–1276CrossRefGoogle Scholar
  53. 53.
    Steckelings UM, Paulis L, Namsolleck P, Unger T (2012) AT2 receptor agonists: hypertension and beyond. Curr Opin Nephrol Hypertens 21:142–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tauheed Ishrat
    • 1
    • 2
  • Bindu Pillai
    • 1
    • 2
  • Adviye Ergul
    • 1
    • 2
    • 3
  • Sherif Hafez
    • 1
    • 2
  • Susan C. Fagan
    • 1
    • 2
    • 4
  1. 1.Charlie Norwood VA Medical CenterAugustaUSA
  2. 2.Center for Pharmacy and Experimental TherapeuticsUniversity of Georgia College of PharmacyAugustaUSA
  3. 3.Department of Physiology, Medical College of GeorgiaGeorgia Regents UniversityAugustaUSA
  4. 4.Department of Neurology, Medical College of GeorgiaGeorgia Regents UniversityAugustaUSA

Personalised recommendations