Neurochemical Research

, Volume 38, Issue 8, pp 1580–1589

Glia Maturation Factor Expression in Hippocampus of Human Alzheimer’s Disease

  • Deirdre Stolmeier
  • Ramasamy Thangavel
  • Poojya Anantharam
  • Mohammad M. Khan
  • Duraisamy Kempuraj
  • Asgar Zaheer
Original Paper

Abstract

Alzheimer’s disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and neurofibrillary tangles (NFTs) associated with neuroinflammation and neuronal degeneration. Hippocampus is one of the earliest and severely damaged areas in AD brain. Glia maturation factor (GMF), a known proinflammatory molecule is up-regulated in AD. Here, we have investigated the expression and distribution of GMF in relation to the distribution of APs and NFTs in the hippocampus of AD brains. Our immunohistochemical results showed GMF is expressed specifically in the vicinity of high density of APs and NFTs in the hippocampus of AD patients. Moreover, reactive astrocytes and activated microglia surrounds the APs and NFTs. We further demonstrate that GMF immunoreactive glial cells were increased at the sites of Tau containing NFTs and APs of hippocampus in AD brains. In conclusion, up-regulated expression of GMF in the hippocampus, and the co-localization of GMF and thioflavin-S stained NFTs and APs suggest that GMF may play important role in the pathogenesis of AD.

Keywords

Alzheimer’s disease Amyloid plaques Glial fibrillary acidic protein Glia maturation factor Hippocampus Ionized calcium binding adaptor molecule 1 

References

  1. 1.
    Luan K, Rosales JL, Lee KY (2012) Viewpoint: crosstalks between neurofibrillary tangles and amyloid plaque formation. Ageing Res Rev 12:174–181PubMedCrossRefGoogle Scholar
  2. 2.
    Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35PubMedGoogle Scholar
  3. 3.
    Thangavel R, Stolmeier D, Yang X, Anantharam P, Zaheer A (2012) Expression of glia maturation factor in neuropathological lesions of Alzheimer’s disease. Neuropathol Appl Neurobiol 38:572–581PubMedCrossRefGoogle Scholar
  4. 4.
    Apostolova LG, Lu PH, Rogers S, Dutton RA, Hayashi KM, Toga AW, Cummings JL, Thompson PM (2006) 3D mapping of mini-mental state examination performance in clinical and preclinical Alzheimer disease. Alzheimer Dis Assoc Disord 20:224–231PubMedCrossRefGoogle Scholar
  5. 5.
    Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85PubMedCrossRefGoogle Scholar
  6. 6.
    Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601PubMedCrossRefGoogle Scholar
  7. 7.
    West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772PubMedCrossRefGoogle Scholar
  8. 8.
    D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134PubMedCrossRefGoogle Scholar
  9. 9.
    deToledo-Morrell L, Stoub TR, Wang C (2007) Hippocampal atrophy and disconnection in incipient and mild Alzheimer’s disease. Prog Brain Res 163:741–753PubMedCrossRefGoogle Scholar
  10. 10.
    Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, Beckett LA, deToledo-Morrell L (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22:747–754PubMedCrossRefGoogle Scholar
  11. 11.
    Villain N, Desgranges B, Viader F, de la Sayette V, Mezenge F, Landeau B, Baron JC, Eustache F, Chetelat G (2008) Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. J Neurosci 28:6174–6181PubMedCrossRefGoogle Scholar
  12. 12.
    Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494PubMedCrossRefGoogle Scholar
  13. 13.
    West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC (2004) Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 25:1205–1212PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson PT, Abner EL, Schmitt FA, Kryscio RJ, Jicha GA, Santacruz K, Smith CD, Patel E, Markesbery WR (2009) Brains with medial temporal lobe neurofibrillary tangles but no neuritic amyloid plaques are a diagnostic dilemma but may have pathogenetic aspects distinct from Alzheimer disease. J Neuropathol Exp Neurol 68:774–784PubMedCrossRefGoogle Scholar
  15. 15.
    Nelson PT, Dimayuga J, Wilfred BR (2010) MicroRNA in situ hybridization in the human entorhinal and transentorhinal cortex. Front Hum Neurosci 4:7PubMedCrossRefGoogle Scholar
  16. 16.
    Van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog Brain Res 83:445–457PubMedCrossRefGoogle Scholar
  17. 17.
    Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1:1–8PubMedCrossRefGoogle Scholar
  18. 18.
    Heneka MT, O’Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm 117:919–947PubMedCrossRefGoogle Scholar
  19. 19.
    Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91PubMedCrossRefGoogle Scholar
  20. 20.
    Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012:756357CrossRefGoogle Scholar
  21. 21.
    Zaheer A, Zaheer S, Thangavel R, Wu Y, Sahu SK, Yang B (2008) Glia maturation factor modulates beta-amyloid-induced glial activation, inflammatory cytokine/chemokine production and neuronal damage. Brain Res 1208:192–203PubMedCrossRefGoogle Scholar
  22. 22.
    Zaheer A, Sahu SK, Wu Y, Haas J, Lee K, Yang B (2007) Diminished cytokine and chemokine expression in the central nervous system of GMF-deficient mice with experimental autoimmune encephalomyelitis. Brain Res 1144:239–247PubMedCrossRefGoogle Scholar
  23. 23.
    Lim R, Miller JF, Zaheer A (1989) Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci USA 86:3901–3905PubMedCrossRefGoogle Scholar
  24. 24.
    Lim R, Zaheer A, Lane WS (1990) Complete amino acid sequence of bovine glia maturation factor beta. Proc Natl Acad Sci USA 87:5233–5237PubMedCrossRefGoogle Scholar
  25. 25.
    Zaheer A, Lim R (1990) Disulfide isoforms of recombinant glia maturation factor beta. Biochem Biophys Res Commun 171:746–751PubMedCrossRefGoogle Scholar
  26. 26.
    Zaheer A, Zaheer S, Sahu SK, Knight S, Khosravi H, Mathur SN, Lim R (2007) A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J Neurochem 101:364–376PubMedCrossRefGoogle Scholar
  27. 27.
    Zaheer S, Thangavel R, Sahu SK, Zaheer A (2011) Augmented expression of glia maturation factor in Alzheimer’s disease. Neuroscience 194:227–233PubMedCrossRefGoogle Scholar
  28. 28.
    Thangavel R, Sahu SK, Van Hoesen GW, Zaheer A (2008) Modular and laminar pathology of Brodmann’s area 37 in Alzheimer’s disease. Neuroscience 152:50–55PubMedCrossRefGoogle Scholar
  29. 29.
    Thangavel R, Van Hoesen GW, Zaheer A (2008) Posterior parahippocampal gyrus pathology in Alzheimer’s disease. Neuroscience 154:667–676PubMedCrossRefGoogle Scholar
  30. 30.
    Thangavel R, Sahu SK, Van Hoesen GW, Zaheer A (2009) Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer’s disease. Neuroscience 160:427–433PubMedCrossRefGoogle Scholar
  31. 31.
    Thangavel R, Van Hoesen GW, Zaheer A (2009) The abnormally phosphorylated tau lesion of early Alzheimer’s disease. Neurochem Res 34:118–123PubMedCrossRefGoogle Scholar
  32. 32.
    Stempler S, Waldman YY, Wolf L, Ruppin E (2012) Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer’s disease progression. Neurobiol Aging 33:2230 e2213–2230 e2221Google Scholar
  33. 33.
    Venkateshappa C, Harish G, Mahadevan A, Bharath MMS, Shankar SK (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37:1601–1614PubMedCrossRefGoogle Scholar
  34. 34.
    Villette V, Poindessous-Jazat F, Bellessort B, Roullot E, Peterschmitt Y, Epelbaum J, Stephan A, Dutar P (2012) A new neuronal target for beta-amyloid peptide in the rat hippocampus. Neurobiol Aging 33:1126 e1121–1114Google Scholar
  35. 35.
    Biscaro B, Lindvall O, Tesco G, Ekdahl CT, Nitsch RM (2012) Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer’s disease. Neurodegener Dis 9:187–198PubMedCrossRefGoogle Scholar
  36. 36.
    Padurariu M, Ciobica A, Mavroudis I, Fotiou D, Baloyannis S (2012) Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer’s disease patients. Psychiatr Danub 24:152–158PubMedGoogle Scholar
  37. 37.
    Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137PubMedCrossRefGoogle Scholar
  38. 38.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934PubMedCrossRefGoogle Scholar
  39. 39.
    Cameron B, Landreth GE (2010) Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis 37:503–509PubMedCrossRefGoogle Scholar
  40. 40.
    Lim R, Hicklin DJ, Miller JF, Williams TH, Crabtree JB (1987) Distribution of immunoreactive glia maturation factor-like molecule in organs and tissues. Brain Res 430:93–100PubMedGoogle Scholar
  41. 41.
    Nagele RG, D’Andrea MR, Lee H, Venkataraman V, Wang HY (2003) Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Res 971:197–209PubMedCrossRefGoogle Scholar
  42. 42.
    Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC, Wegiel J (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674PubMedCrossRefGoogle Scholar
  43. 43.
    D’Andrea MR, Nagele RG (2010) Morphologically distinct types of amyloid plaques point the way to a better understanding of Alzheimer’s disease pathogenesis. Biotech Histochem 85:133–147PubMedCrossRefGoogle Scholar
  44. 44.
    Akiyama H, Mori H, Saido T, Kondo H, Ikeda K, McGeer PL (1999) Occurrence of the diffuse amyloid beta-protein (Abeta) deposits with numerous Abeta-containing glial cells in the cerebral cortex of patients with Alzheimer’s disease. Glia 25:324–331PubMedCrossRefGoogle Scholar
  45. 45.
    Zaheer S, Thangavel R, Wu Y, Khan MM, Kempuraj D, Zaheer A (2013) Enhanced expression of glia maturation factor correlates with glial activation in the brain of triple transgenic Alzheimer’s disease mice. Neurochem Res 38:218–225Google Scholar
  46. 46.
    Wang BR, Zaheer A, Lim R (1992) Polyclonal antibody localizes glia maturation factor beta-like immunoreactivity in neurons and glia. Brain Res 591:1–7PubMedCrossRefGoogle Scholar
  47. 47.
    Zaheer A, Fink BD, Lim R (1993) Expression of glia maturation factor beta mRNA and protein in rat organs and cells. J Neurochem 60:914–920PubMedCrossRefGoogle Scholar
  48. 48.
    Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A (2013) Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J Neuroimmune Pharmacol. 2013 Feb 10. (Epub ahead of print)Google Scholar
  49. 49.
    Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH (2001) Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry 50:743–749PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Deirdre Stolmeier
    • 1
  • Ramasamy Thangavel
    • 1
    • 2
  • Poojya Anantharam
    • 1
  • Mohammad M. Khan
    • 1
  • Duraisamy Kempuraj
    • 1
    • 2
  • Asgar Zaheer
    • 1
    • 2
  1. 1.Department of Neurology, Carver College of MedicineUniversity of Iowa Hospitals and ClinicsIowa CityUSA
  2. 2.Veterans Affair Health Care SystemIowa CityUSA

Personalised recommendations