Neurochemical Research

, Volume 38, Issue 6, pp 1252–1259 | Cite as

Screening of Toll-Like Receptors Expression in Multiple System Atrophy Brains

  • Tomasz Brudek
  • Kristian Winge
  • Tina Klitmøller Agander
  • Bente Pakkenberg
Original Paper

Abstract

The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. It was recently suggested that TLRs have an important role in the crosstalk between neurons and glial cells in the central nervous system, thus their deregulation may play a role in neurodegeneration. Multiple system atrophy (MSA) together with Parkinson’s disease belongs to a diverse group of neurodegenerative conditions termed α-synucleinopathies. MSA is a fatal late onset disease characterized by the presence of α-synuclein positive glial cytoplasmic inclusions in oligodendrocytes. α-Synuclein can act as a danger-associated molecular pattern and alter TLR expression thereby activating inflammatory responses in the brain. In this study, using real-time PCR, we assessed the expression of TLRs (TLR1-10) in selected areas of MSA brains (substantia nigra, striatum, cerebral cortex, and nucleus dentatus) in comparison with normal controls. We show evidence for increased levels of mRNA-encoding hTLR-3, hTLR-4, and hTLR-5 in substantia nigra, striatum, cerebral cortex, and nucleus dentatus from MSA brains versus normal controls. The levels of expression of hTLR-1 mRNA were elevated in substantia nigra and striatum whereas levels of hTLR-8 and hTLR-9 mRNAs were significantly higher in cerebella from MSA patients. The concerted alteration of expression of multiple TLRs in MSA brains can be of relevance for understanding the pathogenesis of the disease.

Keywords

Multiple system atrophy Synucleinopathy Toll-like receptors Neuroinflammation 

References

  1. 1.
    Wenning GK, Colosimo C, Geser F, Poewe W (2004) Multiple system atrophy. Lancet Neurol 3:93–103PubMedCrossRefGoogle Scholar
  2. 2.
    Wenning GK, Jellinger KA (2005) The role of alpha-synuclein in the pathogenesis of multiple system atrophy. Acta Neuropathol 109:129–140PubMedCrossRefGoogle Scholar
  3. 3.
    Beyer K, Ariza A (2007) Protein aggregation mechanisms in synucleinopathies: commonalities and differences. J Neuropathol Exp Neurol 66:965–974PubMedCrossRefGoogle Scholar
  4. 4.
    Jellinger KA, Lantos PL (2010) Papp-Lantos inclusions and the pathogenesis of multiple system atrophy: an update. Acta Neuropathol 119:657–667PubMedCrossRefGoogle Scholar
  5. 5.
    Nishie M, Mori F, Fujiwara H, Hasegawa M, Yoshimoto M, Iwatsubo T, Takahashi H, Wakabayashi K (2004) Accumulation of phosphorylated alpha-synuclein in the brain and peripheral ganglia of patients with multiple system atrophy. Acta Neuropathol 107:292–298PubMedCrossRefGoogle Scholar
  6. 6.
    Stefanova N, Reindl M, Neumann M, Kahle PJ, Poewe W, Wenning GK (2007) Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord 22:2196–2203PubMedCrossRefGoogle Scholar
  7. 7.
    Sekiyama K, Sugama S, Fujita M, Sekigawa A, Takamatsu Y, Waragai M, Takenouchi T, Hashimoto M (2012) Neuroinflammation in Parkinson’s disease and related disorders: a lesson from genetically manipulated mouse models of alpha-synucleinopathies. Parkinsons Dis 2012:271732PubMedGoogle Scholar
  8. 8.
    McGeer PL, McGeer EG (2008) Glial reactions in Parkinson’s disease. Mov Disord 23:474–483PubMedCrossRefGoogle Scholar
  9. 9.
    Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG, McGeer PL (2008) Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 29:739–752PubMedCrossRefGoogle Scholar
  10. 10.
    Su X, Federoff H, Maguire-Zeiss K (2009) Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 16:238–254PubMedCrossRefGoogle Scholar
  11. 11.
    Owens T (2009) Toll-Like receptors in neurodegeneration. In: Kielian T (ed) Toll-like receptors: roles in infection and neuropathology. Springer, Berlin, pp 105–120Google Scholar
  12. 12.
    Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14PubMedCrossRefGoogle Scholar
  13. 13.
    Muzio M, Bosisio D, Polentarutti N, Damico G, Stoppacciaro A, Mancinelli R, vant Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004PubMedGoogle Scholar
  14. 14.
    Yoshimoto T, Nakanishi K (2006) Roles of IL-18 in basophils and mast cells. Allergol Int 55:105–113PubMedCrossRefGoogle Scholar
  15. 15.
    Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924PubMedGoogle Scholar
  16. 16.
    Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291PubMedCrossRefGoogle Scholar
  17. 17.
    Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  18. 18.
    Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci 104:13798–13803PubMedCrossRefGoogle Scholar
  19. 19.
    Netea MG, van der Graaf C, Van der Meer JWM, Kullberg BJ (2004) Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 75:749–755PubMedCrossRefGoogle Scholar
  20. 20.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69PubMedCrossRefGoogle Scholar
  21. 21.
    Beraud D, Twomey M, Bloom B, Mittereder A, Ton V, Neitzke K, Chasovskikh S, Mhyre TR, Maguire-Zeiss KA (2011) Alpha-synuclein alters Toll-like receptor expression. Front Neurosci 5:80PubMedCrossRefGoogle Scholar
  22. 22.
    Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30:759–768PubMedCrossRefGoogle Scholar
  23. 23.
    Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272PubMedCrossRefGoogle Scholar
  24. 24.
    Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676PubMedCrossRefGoogle Scholar
  25. 25.
    Trojanowski JQ, Revesz T (2007) The Neuropathology Working Group on MSA. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620PubMedCrossRefGoogle Scholar
  26. 26.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  27. 27.
    Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59:278–292PubMedCrossRefGoogle Scholar
  28. 28.
    Amor S, Puentes F, Baker D, Van Der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169PubMedCrossRefGoogle Scholar
  29. 29.
    Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146:248–254PubMedCrossRefGoogle Scholar
  30. 30.
    Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W, Wenning GK (2011) Toll-like receptor 4 promotes [alpha]-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol 179:954–963PubMedCrossRefGoogle Scholar
  31. 31.
    Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci 100:8514–8519PubMedCrossRefGoogle Scholar
  32. 32.
    Fellner L, Irschick R, Schanda K, Reindl M, Klimaschewski L, Poewe W, Wenning GK, Stefanova N (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61(3):349–360Google Scholar
  33. 33.
    Roodveldt C, Labrador-Garrido A, Gonzalez-Rey E, Fernandez-Montesinos R, Caro M, Lachaud CC, Waudby CA, Delgado M, Dobson CM, Pozo D (2010) Glial innate immunity generated by non-aggregated alpha-synuclein in mouse: differences between wild-type and Parkinson’s disease-linked mutants. PLoS One 5:e13481PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinsons disease. FASEB J 19:533–542PubMedCrossRefGoogle Scholar
  35. 35.
    Watson MB, Richter F, Lee SK, Gabby L, Wu J, Masliah E, Effros RB, Chesselet MF (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237:318–334PubMedCrossRefGoogle Scholar
  36. 36.
    Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and Toll-Like receptors 2 and 4 are required for fibrillar abeta-stimulated microglial activation. J Neurosci 29:11982–11992PubMedCrossRefGoogle Scholar
  37. 37.
    Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20:947–956PubMedCrossRefGoogle Scholar
  38. 38.
    Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129:3006–3019PubMedCrossRefGoogle Scholar
  39. 39.
    Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM (2006) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281:3651–3659PubMedCrossRefGoogle Scholar
  40. 40.
    Iribarren P, Chen K, Hu J, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM (2005) CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1–42 peptide by up-regulating the expression of the G-protein-coupled receptor mFPR2. FASEB J 19:2032–2034PubMedGoogle Scholar
  41. 41.
    Fellner L, Jellinger K, Wenning G, Stefanova N (2011) Glial dysfunction in the pathogenesis of alpha-synucleinopathies: emerging concepts. Acta Neuropathol 121:675–693PubMedCrossRefGoogle Scholar
  42. 42.
    Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17PubMedCrossRefGoogle Scholar
  43. 43.
    Streit W, Mrak R, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 1:14CrossRefGoogle Scholar
  44. 44.
    Fellner L, Stefanova N (2013) The role of glia in alpha-synucleinopathies. Mol Neurobiol 47(2):575–586Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tomasz Brudek
    • 1
  • Kristian Winge
    • 2
  • Tina Klitmøller Agander
    • 3
  • Bente Pakkenberg
    • 1
  1. 1.Research Laboratory for Stereology and NeuroscienceBispebjerg University HospitalCopenhagen NVDenmark
  2. 2.Department of NeurologyBispebjerg University HospitalCopenhagenDenmark
  3. 3.Department of PathologyHvidovre HospitalCopenhagenDenmark

Personalised recommendations