Neurochemical Research

, Volume 38, Issue 5, pp 1002–1012 | Cite as

Chemokine Fractalkine Attenuates Overactivation and Apoptosis of BV-2 Microglial Cells Induced by Extracellular ATP

  • Fei Hao
  • Nan-Nan Zhang
  • Dong-Mei Zhang
  • Hui-Yu Bai
  • Hua Piao
  • Bo Yuan
  • Hao-Yue Zhu
  • Huan Yu
  • Cong-Shu Xiao
  • Ai-Ping Li
Original Paper

Abstract

Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The “microglial dysfunction hypothesis” of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.

Keywords

Fractalkine ATP BV-2 microglial cell PI3 K/Akt pathway Cytotoxicity 

Notes

Acknowledgments

This work was supported by a grant from the Natural Science Foundation of Liaoning Province, China (No. 201202050). Authors are grateful to Dr. Ying Zhao for technical expertise and Prof. Qigui Liu, a statistical expert, for helpful discussions.

References

  1. 1.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69PubMedCrossRefGoogle Scholar
  2. 2.
    Garden GA, Möller T (2006) Microglia biology in health and disease. J Neuroimmune Pharm 1:127–137CrossRefGoogle Scholar
  3. 3.
    Kim WK, Hwang SY, Oh ES, Piao HZ, Kim KW et al (2004) TGF-beta 1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol 172:7015–7023PubMedGoogle Scholar
  4. 4.
    Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787PubMedCrossRefGoogle Scholar
  5. 5.
    Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: gatekeepers of central nervous system immunology. J Leukocyte Biol 85:352–370PubMedCrossRefGoogle Scholar
  6. 6.
    Monk PN, Shaw PJ (2006) ALS: life and death in a bad neighborhood. Nat Med 12:885–887PubMedCrossRefGoogle Scholar
  7. 7.
    Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132:288–295PubMedCrossRefGoogle Scholar
  8. 8.
    Liu B, Wang K, Gao HM, Mandavilli B, Wang JY et al (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77:182–189PubMedCrossRefGoogle Scholar
  9. 9.
    Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92:293–315PubMedCrossRefGoogle Scholar
  10. 10.
    Liang J, Takeuchi H, Jin S, Noda M, Li H et al (2010) Glutamate induces neurotrophic factor production from microglia via protein kinase C pathway. Brain Res 1322:8–23PubMedCrossRefGoogle Scholar
  11. 11.
    Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25:945–953PubMedCrossRefGoogle Scholar
  12. 12.
    Matute C, Alberdi E, Domercq M, Sánchez-Gómez M-V, Pérez-Samartín A et al (2007) Excitotoxic damage to white matter. J Anat 210:693–702PubMedCrossRefGoogle Scholar
  13. 13.
    Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436PubMedCrossRefGoogle Scholar
  14. 14.
    Delarasse C, Gonnord P, Galante M, Auger R, Daniel H et al (2009) Neural progenitor cell death is induced by extracellular ATP via ligation of P2X7 receptor. J Neurochem 109:846–857PubMedCrossRefGoogle Scholar
  15. 15.
    Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219:53–64PubMedCrossRefGoogle Scholar
  16. 16.
    Farber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch 452:615–621PubMedCrossRefGoogle Scholar
  17. 17.
    Re DB, Przedborski S (2006) Fractalkine: moving from chemotaxis to neuroprotection. Nat Neurosci 9:859–861PubMedCrossRefGoogle Scholar
  18. 18.
    Cipriani R, Villa P, Chece G, Lauro C, Paladini A et al (2011) CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J Neurosci 31:16327–16335PubMedCrossRefGoogle Scholar
  19. 19.
    Pabon MM, Bachstetter AD, Hudson CE, Gemma C, Bickford PC (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflamm 8:9CrossRefGoogle Scholar
  20. 20.
    Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM et al (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci 31:16241–16250PubMedCrossRefGoogle Scholar
  21. 21.
    Fuhrmann M, Bittner T, Jung CKE, Burgold S, Page RM et al (2010) Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 13:411–413PubMedCrossRefGoogle Scholar
  22. 22.
    Mizuno T, Kawanokuchi J, Numata K, Suzumura A (2003) Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979:65–70CrossRefGoogle Scholar
  23. 23.
    Lauro C, Di Angelantonio S, Cipriani R, Sobrero F, Antonilli L et al (2008) Activity of adenosine receptors type 1 is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol 180:7590–7596PubMedGoogle Scholar
  24. 24.
    Limatola C, Lauro C, Catalano M, Ciotti MT, Bertollini C et al (2005) Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J Neuroimmunol 166:19–28PubMedCrossRefGoogle Scholar
  25. 25.
    Deiva K, Geeraerts T, Salim H, Leclerc P, Hery C et al (2004) Fractalkine reduces N-methyl-d-aspartate-induced calcium flux and apoptosis in human neurons through extracellular signal-regulated kinase activation. Eur J Neurosci 20:3222–3232PubMedCrossRefGoogle Scholar
  26. 26.
    Boehme SA, Lio FM, Maciejewski-Lenoir D, Bacon KB, Conlon PJ (2000) The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J Immunol 165:397–403PubMedGoogle Scholar
  27. 27.
    Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237PubMedCrossRefGoogle Scholar
  28. 28.
    Juknat A, Pietr M, Kozela E, Rimmerman N, Levy R et al (2012) Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Delta9-tetrahydrocannabinol in BV-2 microglial cells. Br J Pharmacol 165:2512–2528PubMedCrossRefGoogle Scholar
  29. 29.
    Lee P, Hur J, Lee J, Kim J, Jeong J et al (2006) 15,16-dihydrotanshinone I suppresses the activation of BV-2 cell, a murine microglia cell line, by lipopolysaccharide. Neurochem Int 48:60–66PubMedCrossRefGoogle Scholar
  30. 30.
    Lee JA, Song HY, Ju SM, Lee SJ, Seo WY et al (2010) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 by cell-permeable superoxide dismutase in lipopolysaccharide- stimulated BV-2 microglial cells. Mol Cells 29:245–250PubMedCrossRefGoogle Scholar
  31. 31.
    Shen S, Yu S, Binek J, Chalimoniuk M, Zhang X et al (2005) Distinct signaling pathways for induction of type II NOS by IFNgamma and LPS in BV-2 microglial cells. Neurochem Int 47:298–307PubMedCrossRefGoogle Scholar
  32. 32.
    Lee S, Lee J, Kim S, Park JY, Lee WH et al (2007) A dual role of lipocalin 2 in the apoptosis and deramification of activated microglia. J Immunol 179:3231–3241PubMedGoogle Scholar
  33. 33.
    Shigemoto-Mogami Y, Koizumi S, Tsuda M, Ohsawa K, Kohsaka S et al (2001) Mechanisms underlying extracellular ATP-evoked interleukin-6 release in mouse microglial cell line, MG-5. J Neurochem 78:1339–1349PubMedCrossRefGoogle Scholar
  34. 34.
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758PubMedCrossRefGoogle Scholar
  35. 35.
    Xiang Z, Chen M, Ping J, Dunn P, Lv J et al (2006) Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J Neurosci Res 83:91–101PubMedCrossRefGoogle Scholar
  36. 36.
    Choi DK, Koppula S, Suk K (2011) Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 16:1021–1043PubMedCrossRefGoogle Scholar
  37. 37.
    Hu X, Zhou H, Zhang D, Yang S, Qian L et al (2012) Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J Neuroimmune Pharm 7:187–201CrossRefGoogle Scholar
  38. 38.
    Zujovic V, Benavides J, Vige X, Carter C, Taupin V (2000) Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia 29:305–315PubMedCrossRefGoogle Scholar
  39. 39.
    Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y et al (2011) Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286:2308–2319PubMedCrossRefGoogle Scholar
  40. 40.
    Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924PubMedCrossRefGoogle Scholar
  41. 41.
    Vinet J, van Weering HR, Heinrich A, Kalin RE, Wegner A et al (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflamm 9:27CrossRefGoogle Scholar
  42. 42.
    Lyons A, Lynch AM, Downer EJ, Hanley R, O’Sullivan JB et al (2009) Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J Neurochem 110:1547–1556PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fei Hao
    • 1
  • Nan-Nan Zhang
    • 1
  • Dong-Mei Zhang
    • 1
  • Hui-Yu Bai
    • 1
  • Hua Piao
    • 2
  • Bo Yuan
    • 1
  • Hao-Yue Zhu
    • 1
  • Huan Yu
    • 1
  • Cong-Shu Xiao
    • 1
  • Ai-Ping Li
    • 1
  1. 1.Department of PhysiologyDalian Medical UniversityDalianPeople’s Republic of China
  2. 2.Institute for Brain DisordersDalian Medical UniversityDalianPeople’s Republic of China

Personalised recommendations