Neurochemical Research

, Volume 38, Issue 5, pp 906–915 | Cite as

The Anticonvulant Effect of Cooling in Comparison to α-Lipoic Acid: A Neurochemical Study

  • Yasser A. Khadrawy
  • Heba S. AboulEzz
  • Nawal A. Ahmed
  • Haitham S. Mohammed
Original Paper


Brain cooling has pronounced effects on seizures and epileptic activity. The aim of the present study is to evaluate the anticonvulsant effect of brain cooling on the oxidative stress and changes in Na+, K+-ATPase and acetylcholinesterase (AchE) activities during status epilepticus induced by pilocarpine in the hippocampus of adult male rat in comparison with α-lipoic acid. Rats were divided into four groups: control, rats treated with pilocarpine for induction of status epilepticus, rats treated for 3 consecutive days with α-lipoic acid before pilocarpine and rats subjected to whole body cooling for 30 min before pilocarpine. The present findings indicated that pilocarine-induced status epilepticus was accompanied by a state of oxidative stress as clear from the significant increase in lipid peroxidation (MDA) and superoxide dismutase (SOD) and significant decrease in reduced glutathione and nitric oxide (NO) levels and the activities of catalase, AchE and Na+, K+-ATPase. Pretreatment with α-lipoic acid ameliorated the state of oxidative stress and restored AchE to nearly control activity. However, Na+, K+-ATPase activity showed a significant decrease. Rats exposed to cooling for 30 min before the induction of status epilepticus revealed significant increases in MDA and NO levels and SOD activity. AchE returned to control value while the significant decrease in Na+, K+-ATPase persisted. The present data suggest that cooling may have an anticonvulsant effect which may be mediated by the elevated NO level. However, brain cooling may have drastic unwanted insults such as oxidative stress and the decrease in Na+, K+-ATPase activity.


Brain cooling α-Lipoic acid Hippocampus Epilepsy Oxidative stress 


  1. 1.
    Commission on Epidemiology and Prognosis (1993) International League Against Epilepsy: guidelines for epidemiologic studies on epilepsy. Epilepsia 34:592–596CrossRefGoogle Scholar
  2. 2.
    Ommaya AK, Baldwin M (1963) Extravascular local cooling of the brain in man. J Neurosurg 20:8–20PubMedCrossRefGoogle Scholar
  3. 3.
    Liebregts MT, McLachlan RS, Leung LS (2002) Hyperthermia induces age-dependent changes in rat hippocampal excitability. Ann Neurol 52:318–326PubMedCrossRefGoogle Scholar
  4. 4.
    Karkar KM, Garcia PA, Bateman LM, Smyth MD, Barbaro NM, Berger M (2002) Focal cooling suppresses spontaneous epileptiform activity without changing the cortical motor threshold. Epilepsia 43:932–935PubMedCrossRefGoogle Scholar
  5. 5.
    Maeda T, Hashizume K, Tanaka T (1999) Effect of hypothermia on kainic acid-induced limbic seizures: an electroencephalographic and 14C-deoxyglucose autoradiographic study. Brain Res 818:228–235PubMedCrossRefGoogle Scholar
  6. 6.
    Schmitt FC, Buchheim K, Meierkord H, Holtkamp M (2006) Anticonvulsant properties of hypothermia in experimental status epilepticus. Neurobiol Dis 23:689–696PubMedCrossRefGoogle Scholar
  7. 7.
    Hill MW, Wong M, Amarakone A, Rothman SM (2000) Rapid cooling aborts seizure-like activity in rodent hippocampal entorhinal slices. Epilepsia 41:1241–1248PubMedCrossRefGoogle Scholar
  8. 8.
    Yang XF, Rothman SM (2001) Focal cooling rapidly terminates experimental neocortical seizures. Ann Neurol 49:721–726PubMedCrossRefGoogle Scholar
  9. 9.
    Yang XF, Ouyang Y, Kennedy BR, Rothman SM (2005) Cooling blocks rat hippocampal neurotransmission by a presynaptic mechanism: observations using 2-photon microscopy. J Physiol 567:215–224PubMedCrossRefGoogle Scholar
  10. 10.
    Shen KF, Schwartzkroin PA (1988) Effects of temperature alterations on population and cellular activities in hippocampal slices from mature and immature rabbit. Brain Res 475:305–316PubMedCrossRefGoogle Scholar
  11. 11.
    Thompson SM, Masukawa LM, Prince DA (1985) Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci 5:817–824PubMedGoogle Scholar
  12. 12.
    Aihara H, Okada Y, Tamaki N (2001) The effects of cooling and rewarming on the neuronal activity of pyramidal neurons in guinea pig hippocampal slices. Brain Res 893:36–45PubMedCrossRefGoogle Scholar
  13. 13.
    Javedan SP, Fisher RS, Eder HG, Smith K, Wu J (2002) Cooling abolishes neuronal network synchronization in rat hippocampal slices. Epilepsia 43:574–580PubMedCrossRefGoogle Scholar
  14. 14.
    Motamedi GK, Salazar P, Smith EL, Lesser RP, Webber WRS, Ortinski PI, Vicini S, Rogawski MA (2006) Termination of epileptiform activity by cooling in rat hippocampal slice epilepsy models. Epilepsy Res 70:200–210PubMedCrossRefGoogle Scholar
  15. 15.
    Globus MYT, Alonso O, Dietrich WD, Busto R, Ginsberg MD (1995) Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem 65:1704–1711PubMedCrossRefGoogle Scholar
  16. 16.
    Guven H, Amanvermez R, Malazgirt Z, Kaya E, Doganay Z, Celik C, Ozkan K (2002) Moderate hypothermia prevents brain stem oxidative stress injury after hemorrhagic shock. J Trauma 53:66–72PubMedCrossRefGoogle Scholar
  17. 17.
    Horiguchi T, Shimizu K, Ogino M, Suga S, Inamasu J, Kawase T (2003) Pastischemic hypothermia inhibits the generation of hydroxyl radical following transient forebrain ischemia in rats. J Neurotrauma 20:511–520PubMedCrossRefGoogle Scholar
  18. 18.
    Polderman KH (2001) Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence. Intensive Care Med 30:556–575CrossRefGoogle Scholar
  19. 19.
    Biagas K, Gaeta M (1998) Treatment of traumatic brain injury with hypothermia. Curr Opin Pediatr 10:271–277PubMedCrossRefGoogle Scholar
  20. 20.
    Park WS, Chang YS, Lee M (2001) Effect of hypothermia on brain cell membrane function and energy metabolism in experimental Escherichia coli meningitis in the newborn piglet. Neurochem Res 26:369–374PubMedCrossRefGoogle Scholar
  21. 21.
    Iwai T, Niwa M, Yamada H, Nozaki M, Tsurumi K (1993) Hypothermic prevention of the hippocampal damage following ischemia in Mongolian gerbils comparison between intraischemic and brief postischemic hypothermia. Life Sci 52:1031–1038PubMedCrossRefGoogle Scholar
  22. 22.
    Matzen J, Buchheim K, van Landeghem FK, Meierkord H, Holtkamp M (2008) Functional and morphological changes in the dentate gyrus after experimental status epilepticus. Seizure 17:76–83PubMedCrossRefGoogle Scholar
  23. 23.
    Barros DO, Xavier SM, Barbosa CO, Silva RF, Freitas RL, Maia FD, Oliveira AA, Freitas RM, Takahashi RN (2007) Effects of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats. Neurosci Lett 416:227–230PubMedCrossRefGoogle Scholar
  24. 24.
    Patel MN (2002) Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radic Res 36:1139–1146PubMedCrossRefGoogle Scholar
  25. 25.
    Frantseva MV, Velazquez JL, Hwang PA, Carlen PL (2000) Free radical production correlates with cell death in an in vitro model of epilepsy. Eur J Neurosci 12:1431–1439PubMedCrossRefGoogle Scholar
  26. 26.
    Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+, K+-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149PubMedCrossRefGoogle Scholar
  27. 27.
    Donaldson J, St Pierre T, Minnich J, Barbeau A (1971) Seizures in rats associated with divalent cation inhibition of Na+-K+-ATP’ase. Can J Biochem 49:1217–1224PubMedCrossRefGoogle Scholar
  28. 28.
    Rapport RL, Harris AB, Friel PN, Ojemann GA (1975) Human epileptic brain Na, K ATPase activity and phenytoin concentrations. Arch Neurol 32:549–554PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson WR, Franck JE, Stahl WL, Maki AA (1994) Na, K-ATPase is decreased in hippocampus of kainate-lesioned rats. Epilepsy Res 17:221–231PubMedCrossRefGoogle Scholar
  30. 30.
    Fernandes MJS, Naffah-Mazzacoratti MG, Cavalheiro EA (1996) Na+, K+-ATPase activity in the rat hippocampus: a study in the pilocarpine model of epilepsy. Neurochem Int 28:497–500PubMedCrossRefGoogle Scholar
  31. 31.
    Duysen EG, Stribley JA, Fry DL, Hinrichs SH, Lockridge O (2002) Rescue of the acetylcholinesterase knockout mouse by feeding a liquid diet; phenotype of the adult acetylcholinesterase deficient mouse. Brain Res Dev Brain Res 137:43–54PubMedCrossRefGoogle Scholar
  32. 32.
    Freitas RM, de Sousa FC, Vasconcelos SM, Viana GS, Fonteles MM (2003) Acute alterations of neurotransmitters levels in striatum of young rat after pilocarpine-induced status epilepticus. Arq Neuropsiquiatr 61:430–433PubMedCrossRefGoogle Scholar
  33. 33.
    Czuczwar SJ, Tutka P, Klonowski P, Kleinrok Z (1999) N(G)-nitro-l-arginine impairs the anticonvulsive action of ethosuximide against pentylenetetrazol. Eur J Pharmacol 366:137–142PubMedCrossRefGoogle Scholar
  34. 34.
    De Sarro G, Di Paola ED, De Sarro A, Vidal MJ (1993) l-arginine potentiates excitatory amino acid-induced seizures elicited in the deep prepiriform cortex. Eur J Pharmacol 230:151–158PubMedCrossRefGoogle Scholar
  35. 35.
    Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32:297–311PubMedCrossRefGoogle Scholar
  36. 36.
    Maggio R, Fumagalli F, Donati E, Barbier P, Racagni G, Corsini GU, Riva M (1995) Inhibition of nitric oxide synthase dramatically potentiates seizures induced by kainic acid and pilocarpine in rats. Brain Res 679:184–187PubMedCrossRefGoogle Scholar
  37. 37.
    Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9:315–335PubMedCrossRefGoogle Scholar
  38. 38.
    Williams MB, Jope RS (1994) Protein synthesis inhibitors attenuate seizures induced in rats by lithium plus pilocarpine. Exp Neurol 129:169–173PubMedCrossRefGoogle Scholar
  39. 39.
    Montgomery HAC, Dymock JF (1961) The determination of nitrite in water. Analyst 86:414–416Google Scholar
  40. 40.
    Ruiz-Larrea MB, Leal AM, Liza M, Lacort M, de Groot H (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388PubMedCrossRefGoogle Scholar
  41. 41.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  42. 42.
    Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–854PubMedCrossRefGoogle Scholar
  43. 43.
    Habig WH, Pabst MJ, Jacoby WB (1973) Glutathione-S-transferase; the first step in mercapturic fermentation. J Biochem 249:7130–7139Google Scholar
  44. 44.
    Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95PubMedCrossRefGoogle Scholar
  45. 45.
    Gorun V, Proinov I, Baltescu V, Balaban G, Barzu O (1978) Modified Ellman procedure for assay of cholinesterase in crude-enzymatic preparations. Anal Biochem 86:324–326PubMedCrossRefGoogle Scholar
  46. 46.
    Bowler K, Tirri R (1974) The temperature characteristics of synaptic membrane ATPases from immature and adult rat brain. J Neurochem 23:611–613PubMedCrossRefGoogle Scholar
  47. 47.
    Tsakiris S, Angelogianni P, Schulpis KH, Behrakis P (2000) Protective effect of l-cysteine and glutathione on rat brain Na+, K+-ATPase inhibition induced by free radicals. Z Naturforsch 55:271–277Google Scholar
  48. 48.
    Dal-Pizzol F, Klamt F, Vianna MM, Schröder N, Quevedo J, Benfato MS, Moreira JC, Walz R (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182PubMedCrossRefGoogle Scholar
  49. 49.
    Liu J, Wang A, Li L, Huang Y, Xue P, Hao A (2010) Oxidative stress mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Seizure 19:165–172PubMedCrossRefGoogle Scholar
  50. 50.
    Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706PubMedCrossRefGoogle Scholar
  51. 51.
    Sleven H, Gibbs JE, Heales S, Thom M, Cock HR (2006) Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus. Neurochem Int 48:75–82PubMedCrossRefGoogle Scholar
  52. 52.
    Heales SJ, Davies SE, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38PubMedCrossRefGoogle Scholar
  53. 53.
    Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103–167PubMedGoogle Scholar
  54. 54.
    Yun HY, Dawson VL, Dawson TM (1997) Nitric oxide in health and disease of the nervous system. Mol Psychiat 2:300–310CrossRefGoogle Scholar
  55. 55.
    Buisson A, Lakhmeche N, Verrecchia C, Plotkine M, Boulu RG (1993) Nitric oxide: an endogenous anticonvulsant substance. NeuroReport 4:444–446PubMedCrossRefGoogle Scholar
  56. 56.
    Manzoni O, Prezeau L, Marin P, Deshager S, Bockaert J, Fagni L (1992) Nitric oxide-induced blockade of NMDA receptors. Neuron 8:653–662PubMedCrossRefGoogle Scholar
  57. 57.
    Starr MS, Starr BS (1993) Paradoxical facilitation of pilocarpine-induced seizures in the mouse by MK-801 and the nitric oxide synthesis inhibitor L-NAME. Pharmacol Biochem Behav 45:321–325PubMedCrossRefGoogle Scholar
  58. 58.
    Milatovic D, Gupta RC, Dettbarn WD (2002) Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res 957:330–337PubMedCrossRefGoogle Scholar
  59. 59.
    Jope RS, Simonato M, Lally K (1987) Acetylcholine content in rat brain is elevated by status epilepticus induced by lithium and pilocarpine. J Neurochem 49:944–951PubMedCrossRefGoogle Scholar
  60. 60.
    Ormandy GC, Jope RS, Snead OC (1989) Anticonvulsant actions of MK-801 on the lithium-pilocarpine model of status epilepticus in rats. Exp Neurol 106:172–180PubMedCrossRefGoogle Scholar
  61. 61.
    Ullrich S, Zhang Y, Avram D, Ranta F, Kuhl D, Häring HU, Lang F (2007) Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1. Biochem Biophys Res Commun 352:662–667PubMedCrossRefGoogle Scholar
  62. 62.
    Freitas RM (2010) Lipoic acid alters δ-aminolevulinic dehydratase, glutathione peroxidase and Na+, K+-ATPase activities and glutathione-reduced levels in rat hippocampus after pilocarpine-induced seizures. Cell Mol Neurobiol 30:381–387PubMedCrossRefGoogle Scholar
  63. 63.
    Calabresi P, De Murtas M, Pisani A, Stefani A, Sancesario G, Mercuri NB, Bernardi G (1995) Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase. Eur J Neurosci 7:1674–1683PubMedCrossRefGoogle Scholar
  64. 64.
    Lees GJ, Leong W (1996) Interactions between excitotoxins and the Na+/K+-ATPase inhibitor ouabain in causing neuronal lesions in the rat hippocampus. Brain Res 714:145–155PubMedCrossRefGoogle Scholar
  65. 65.
    Young RS, Petroff OA, Chen B, Gore JC, Aquila WJ (1991) Brain energy state and lactate metabolism during status epilepticus in the neonatal dog: in vivo 31P and 1H nuclear magnetic resonance study. Pediatr Res 29:191–195PubMedCrossRefGoogle Scholar
  66. 66.
    Freitas RM (2009) The evaluation of effects of lipoic acid on the lipid peroxidation, nitrite formation and antioxidant enzymes in the hippocampus of rats after pilocarpine-induced seizures. Neurosci Lett 455:140–144PubMedCrossRefGoogle Scholar
  67. 67.
    de Sales Santos IM, Feitosa CM, de Freitas RM (2010) Pilocarpine-induced seizures produce alterations on choline acetyltransferase and acetylcholinesterase activities and deficit memory in rats. Cell Mol Neurobiol 30:569–575PubMedCrossRefGoogle Scholar
  68. 68.
    Handelman GJ, Han D, Tritschler H, Packer L (1994) Alpha-lipoic acid reduction by mammalian cells to the dithiol form, and release into the culture medium. Biochem Pharmacol 47:1725–1730PubMedCrossRefGoogle Scholar
  69. 69.
    Buchan A, Pulsinelli WA (1990) Hypothermia but not the N-methyl-d-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10:311–316PubMedGoogle Scholar
  70. 70.
    Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11:114–121PubMedCrossRefGoogle Scholar
  71. 71.
    Dietrich WD, Alonso O, Busto R, Globus MY, Ginsberg MD (1994) Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 87:250–258PubMedCrossRefGoogle Scholar
  72. 72.
    Jiang JY, Lyeth BG, Kapasi MZ, Jenkins LW, Povlishock JT (1992) Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat. Acta Neuropathol 84:495–500PubMedCrossRefGoogle Scholar
  73. 73.
    Taft WC, Yang K, Dixon CE, Clifton GL, Hayes RL (1993) Hypothermia attenuates the loss of hippocampal microtubule-associated protein 2 (MAP2) following traumatic brain injury. J Cereb Blood Flow Metab 13:796–802PubMedCrossRefGoogle Scholar
  74. 74.
    Motamedi GK, Gonzalez-Sulser A, Dzakpasu R, Vicini S (2012) Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model. Neurotherapeutics 9(1):199–209PubMedCrossRefGoogle Scholar
  75. 75.
    Szabó C (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull 4:131–141Google Scholar
  76. 76.
    Corbett D, Evans S, Thomas C, Wang D, Jonas RA (1990) MK-801 reduced cerebral ischemic injury by inducing hypothermia. Brain Res 514:300–304PubMedCrossRefGoogle Scholar
  77. 77.
    Chatzipanteli K, Wada K, Busto R, Dietrich WD (1999) Effects of moderate hypothermia on constitutive and inducible nitric oxide synthase activities after traumatic brain injury in the rat. J Neurochem 72:2047–2052PubMedCrossRefGoogle Scholar
  78. 78.
    Corry JJ, Dhar R, Murphy T, Diringer MN (2008) Hypothermia for refractory status epilepticus. Neurocrit Care 9:189–197PubMedCrossRefGoogle Scholar
  79. 79.
    Clifton GL, Allen S, Barrodale P, Plenger P, Berry J, Koch S, Fletcher J, Hayes RL, Choi SC (1993) A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma 10:263–271PubMedCrossRefGoogle Scholar
  80. 80.
    Marion DW, Obrist WD, Carlier PM, Penrod LE, Darby JM (1993) The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 79:354–362PubMedCrossRefGoogle Scholar
  81. 81.
    Katz LM, Young AS, Frank JE, Wang Y, Park K (2004) Regulated hypothermia reduces brain oxidative stress after hypoxic-ischemia. Brain Res 1017:85–91PubMedCrossRefGoogle Scholar
  82. 82.
    Zimmer C, Basler HD, Vedder H, Lautenbacher S (2003) Sex differences in cortisol response to noxious stress. Clin J Pain 19:233–239PubMedCrossRefGoogle Scholar
  83. 83.
    Berthon D, Herpin P, Bertin R, De Marco F, le Dividich J (1996) Metabolic changes associated with sustained 48-hr shivering thermogenesis in the newborn pig. Comp Biochem Physiol B Biochem Mol Biol 114:327–335PubMedCrossRefGoogle Scholar
  84. 84.
    Macintyre PE, Pavlin EG, Dwersteg JF (1987) Effect of meperidine on oxygen consumption, carbon dioxide production, and respiratory gas exchange in postanesthesia shivering. Anesth Analg 66:751–755PubMedCrossRefGoogle Scholar
  85. 85.
    Tikuisis P, Jacobs I, Moroz D, Vallerand AL, Martineau L (2000) Comparison of thermoregulatory responses between men and women immersed in cold water. J Appl Physiol 89:1403–1411PubMedGoogle Scholar
  86. 86.
    Neumar RW, Bircher NG, Sim KM, Xiao F, Zadach KS, Radovsky A, Katz L, Ebmeyer E, Safar P (1995) Epinephrine and sodium bicarbonate during CPR following asphyxial cardiac arrest in rats. Resuscitation 29:249–263PubMedCrossRefGoogle Scholar
  87. 87.
    Sapolsky RM, Pulsinelli WA (1985) Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science 229:1397–1400PubMedCrossRefGoogle Scholar
  88. 88.
    Bacher A, Kwon JY, Zornow MH (1998) Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits. Anesthesiology 88:403–409PubMedCrossRefGoogle Scholar
  89. 89.
    Gupta AK, Al-Rawi PG, Hutchinson PJ, Kirkpatrick PJ (2002) Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. Br J Anaesth 88:188–192PubMedCrossRefGoogle Scholar
  90. 90.
    Gunn AJ, Gunn TR (1998) The ‘pharmacology’ of neuronal rescue with cerebral hypothermia. Early Hum Dev 53:19–35PubMedCrossRefGoogle Scholar
  91. 91.
    Goss J, Styren S, Miller P, Kochanek P, Palmer A, Marion D, DeKosky S (1995) Hypothermia attenuates the normal increase in interleukin 1-beta RNA and nerve growth factor following traumatic brain injury in rats. J Neurotrauma 12:159–167PubMedCrossRefGoogle Scholar
  92. 92.
    Park WS, Chang YS, Lee M (2001) Effect of hypothermia on brain cell membrane function and energy metabolism after transient global hypoxia-ischemia in the newborn piglet. J Korean Med Sci 16:335–341PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yasser A. Khadrawy
    • 1
  • Heba S. AboulEzz
    • 2
  • Nawal A. Ahmed
    • 2
  • Haitham S. Mohammed
    • 3
  1. 1.Medical Division, Medical Physiology DepartmentNational Research CenterGizaEgypt
  2. 2.Zoology Department, Faculty of ScienceCairo UniversityGizaEgypt
  3. 3.Biophysics Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations