Advertisement

Neurochemical Research

, Volume 37, Issue 12, pp 2805–2813 | Cite as

Quantitative Proteomic Analysis of Human Substantia Nigra in Alzheimer’s Disease, Huntington’s Disease and Multiple Sclerosis

  • Sheng Chen
  • Frances Fangjia Lu
  • Philip Seeman
  • Fang LiuEmail author
Original Paper

Abstract

The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson’s disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer’s disease, Huntington’s disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer’s diseases, Huntington’s disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.

Keywords

Substantia nigra Quantitative proteomics Alzheimer’s disease Huntington’s disease Multiple sclerosis 

References

  1. 1.
    Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12):3943–3952PubMedCrossRefGoogle Scholar
  2. 2.
    Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2(6):420–436PubMedCrossRefGoogle Scholar
  3. 3.
    Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219(1–2):11–23PubMedCrossRefGoogle Scholar
  4. 4.
    Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17(3):121–127PubMedCrossRefGoogle Scholar
  5. 5.
    Cerione RA (2004) Cdc42: new roads to travel. Trends Cell Biol 14(3):127–132Google Scholar
  6. 6.
    Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12(1):51–58PubMedCrossRefGoogle Scholar
  7. 7.
    Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117(Pt 10):1875–1884PubMedCrossRefGoogle Scholar
  8. 8.
    Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets 11(10):1193–1206PubMedCrossRefGoogle Scholar
  9. 9.
    Gibb WR, Mountjoy CQ, Mann DM, Lees AJ (1989) The substantia nigra and ventral tegmental area in Alzheimer’s disease and Down’s syndrome. J Neurol Neurosurg Psychiatry 52(2):193–200PubMedCrossRefGoogle Scholar
  10. 10.
    Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedCrossRefGoogle Scholar
  11. 11.
    Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11(4):323–342PubMedCrossRefGoogle Scholar
  12. 12.
    Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurology 41(3):345–350PubMedCrossRefGoogle Scholar
  13. 13.
    Kaneko K, Hachiya NS (2006) The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions. Med Hypotheses 67(1):169–171PubMedCrossRefGoogle Scholar
  14. 14.
    Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198PubMedCrossRefGoogle Scholar
  15. 15.
    Kim J, Amante DJ, Moody JP, Edgerly CK, Bordiuk OL, Smith K, Matson SA, Matson WR, Scherzer CR, Rosas HD, Hersch SM, Ferrante RJ (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta 1802(7–8):673–681PubMedGoogle Scholar
  16. 16.
    Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, Mayer RJ (1996) Neurofibrillary tangles of Alzheimer’s disease brains contain 14-3-3 proteins. Neurosci Lett 209(1):57–60PubMedCrossRefGoogle Scholar
  17. 17.
    Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105(11):4441–4446PubMedCrossRefGoogle Scholar
  18. 18.
    Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24(7):1700–1706PubMedCrossRefGoogle Scholar
  19. 19.
    Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340(25):1970–1980PubMedCrossRefGoogle Scholar
  20. 20.
    Meng Y, Liu F, Pang C, Fan S, Song M, Wang D, Li W, Yu S (2011) Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. J Proteome Res 10(12):5416–5432PubMedCrossRefGoogle Scholar
  21. 21.
    Moore GRW (1998) Neuropathology and pathophysiology of the multiple sclerosis lesion. In: Paty DW, Ebers GC (eds) Multiple sclerosis. F.A. Davis Company, Philadelphia, pp 257–327Google Scholar
  22. 22.
    Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22PubMedCrossRefGoogle Scholar
  23. 23.
    Omi K, Hachiya NS, Tanaka M, Tokunaga K, Kaneko K (2008) 14-3-3 zeta is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein. Neurosci Lett 431(1):45–50PubMedCrossRefGoogle Scholar
  24. 24.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  25. 25.
    Ong SE, Pandey A (2001) An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng 18(5):195–205PubMedCrossRefGoogle Scholar
  26. 26.
    Oyanagi K, Takeda S, Takahashi H, Ohama E, Ikuta F (1989) A quantitative investigation of the substantia nigra in Huntington’s disease. Ann Neurol 26(1):13–19PubMedCrossRefGoogle Scholar
  27. 27.
    Panchaud A, Affolter M, Moreillon P, Kussmann M (2008) Experimental and computational approaches to quantitative proteomics: status quo and outlook. J Proteomics 71(1):19–33PubMedCrossRefGoogle Scholar
  28. 28.
    Perez N, Sugar J, Charya S, Johnson G, Merril C, Bierer L, Perl D, Haroutunian V, Wallace W (1991) Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res Mol Brain Res 11(3–4):249–254PubMedCrossRefGoogle Scholar
  29. 29.
    Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V, Cini C, De Marco C, Butterfield DA (2005) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics 4(12):1849–1861PubMedCrossRefGoogle Scholar
  30. 30.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedCrossRefGoogle Scholar
  31. 31.
    Schapira AH, Olanow CW (2004) Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA 291(3):358–364PubMedCrossRefGoogle Scholar
  32. 32.
    Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156PubMedGoogle Scholar
  33. 33.
    Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208PubMedCrossRefGoogle Scholar
  34. 34.
    Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269PubMedCrossRefGoogle Scholar
  35. 35.
    Vissers JP, Langridge JI, Aerts JM (2007) Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 6(5):755–766PubMedCrossRefGoogle Scholar
  36. 36.
    Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228PubMedCrossRefGoogle Scholar
  37. 37.
    Walker FO, Raymond LA (2004) Targeting energy metabolism in Huntington’s disease. Lancet 364(9431):312–313PubMedCrossRefGoogle Scholar
  38. 38.
    Walter U, Wagner S, Horowski S, Benecke R, Zettl UK (2009) Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology 73(13):1010–1017PubMedCrossRefGoogle Scholar
  39. 39.
    Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247PubMedCrossRefGoogle Scholar
  40. 40.
    Werner CJ, Heyny-von Haussen R, Mall G, Wolf S (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8PubMedCrossRefGoogle Scholar
  41. 41.
    Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50(2):169–180PubMedCrossRefGoogle Scholar
  42. 42.
    Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang C, Liu Y, Hu Z, An L, He Y, Hang H (2011) Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses. Protein Cell 2(5):410–422PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao X, Li Q, Zhao L, Pu X (2007) Proteome analysis of substantia nigra and striatal tissue in the mouse MPTP model of Parkinson’s disease. Proteomics Clin Appl 1(12):1559–1569PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu X, Raina AK, Boux H, Simmons ZL, Takeda A, Smith MA (2000) Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int J Dev Neurosci 18(4–5):433–437Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sheng Chen
    • 1
  • Frances Fangjia Lu
    • 1
  • Philip Seeman
    • 2
  • Fang Liu
    • 1
    Email author
  1. 1.Department of Molecular NeuroscienceCentre for Addiction and Mental HealthTorontoCanada
  2. 2.Department of PharmacologyUniversity of TorontoTorontoCanada

Personalised recommendations