Neurochemical Research

, Volume 37, Issue 12, pp 2715–2724 | Cite as

Hemodialysis Decreases Serum Brain-Derived Neurotrophic Factor Concentration in Humans

  • Jerzy A. Zoladz
  • Michał Śmigielski
  • Joanna Majerczak
  • Łukasz R. Nowak
  • Justyna Zapart-Bukowska
  • Olgierd Smoleński
  • Jan Kulpa
  • Krzysztof Duda
  • Joanna Drzewińska
  • Grzegorz Bartosz
Original Paper


In the present study we have evaluated the effect of a single hemodialysis session on the brain-derived neurotrophic factor levels in plasma [BDNF]pl and in serum [BDNF]s as well as on the plasma isoprostanes concentration [F2 isoprostanes]pl, plasma total antioxidant capacity (TAC) and plasma cortisol levels in chronic kidney disease patients. Twenty male patients (age 69.8 ± 2.9 years (mean ± SE)) with end-stage renal disease undergoing maintenance hemodialysis on regular dialysis treatment for 15–71 months participated in this study. A single hemodialysis session, lasting 4.2 ± 0.1 h, resulted in a decrease (P = 0.014) in [BDNF]s by ~42 % (2,574 ± 322 vs. 1,492 ± 327 pg ml−1). This was accompanied by an increase (P < 10−4) of [F2-Isoprostanes]pl (38 ± 3 vs. 116 ± 16 pg ml−1), decrease (P < 10−4) in TAC (1,483 ± 41 vs. 983 ± 35 trolox equivalents, μmol l−1) and a decrease (P = 0.004) in plasma cortisol level (449.5 ± 101.2 vs. 315.3 ± 196.3 nmol l−1). No changes (P > 0.05) in [BDNF]pl and the platelets count were observed after a single dialysis session. Furthermore, basal [BDNF]s in the chronic kidney disease patients was significantly lower (P = 0.03) when compared to the age-matched control group (n = 23). We have concluded that the observed decrease in serum BDNF level after hemodialysis accompanied by elevated [F2-Isoprostanes]pl and decreased plasma TAC might be caused by enhanced oxidative stress induced by hemodialysis.


Ageing BDNF Kidney disease Isoprostanes Oxidative stress Cortisol 



We thank the patients for their kind cooperation in this study. We also gratefully acknowledge the financial support of the Ministry of Science and Higher Education (Poland) (grant number 245/KFiB/2009) for this project.

Conflict of interest

All the authors declared no competing interests.


  1. 1.
    Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152PubMedCrossRefGoogle Scholar
  2. 2.
    Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131PubMedCrossRefGoogle Scholar
  3. 3.
    Kozisek ME, Middlemas D, Bylund DB (2008) Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117:30–51PubMedCrossRefGoogle Scholar
  4. 4.
    Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience 88:1015–1032PubMedCrossRefGoogle Scholar
  5. 5.
    Lamballe F, Klein R, Barbacid M (1991) TrkC, a new member of the Trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66:967–979PubMedCrossRefGoogle Scholar
  6. 6.
    Ebadi M, Bashir RM, Heidrick ML, Hamada FM, Refaey HE, Hamed A, Helal G, Baxi MD, Cerutis DR, Lassi NK (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem Int 30:347–374PubMedCrossRefGoogle Scholar
  7. 7.
    Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9:224–237 ReviewGoogle Scholar
  8. 8.
    Noble EE, Billington CJ, Kotz CM, Wang C (2011) The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 300:R1053–R1069PubMedCrossRefGoogle Scholar
  9. 9.
    Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37:1553–1561PubMedCrossRefGoogle Scholar
  10. 10.
    Lommatzsch M, Zingler D, Schuhbaeck K, Schloetcke K, Zingler C, Schuff-Werner P, Virchow JC (2005) The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging 26:115–123PubMedCrossRefGoogle Scholar
  11. 11.
    Trajkovska V, Marcussen AB, Vinberg M, Hartvig P, Aznar S, Knudsen GM (2007) Measurements of brain-derived neurotrophic factor: methodological aspects and demographical data. Brain Res Bull 73:143–149PubMedCrossRefGoogle Scholar
  12. 12.
    Yamamoto H, Gurney ME (1990) Human platelets contain brain-derived neurotrophic factor. J Neurosci 10:3469–3478PubMedGoogle Scholar
  13. 13.
    Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87:728–734PubMedGoogle Scholar
  14. 14.
    Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328:261–264PubMedCrossRefGoogle Scholar
  15. 15.
    Sartorius A, Hellweg R, Litzke J, Vogt M, Dormann C, Vollmayr B, Danker-Hopfe H, Gass P (2009) Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry 42:270–276PubMedCrossRefGoogle Scholar
  16. 16.
    Blugeot A, Rivat C, Bouvier E, Molet J, Mouchard A, Zeau B, Bernard C, Benoliel JJ, Becker C (2011) Vulnerability to depression: from brain neuroplasticity to identification of biomarkers. J Neurosci 31:12889–12899PubMedCrossRefGoogle Scholar
  17. 17.
    Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN, Sun B (2000) Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 470:113–137PubMedCrossRefGoogle Scholar
  18. 18.
    Kermani P, Hempstead B (2007) Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 17:140–143PubMedCrossRefGoogle Scholar
  19. 19.
    Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: aneuroprotective role of inflammation? J Exp Med 189:865–870PubMedCrossRefGoogle Scholar
  20. 20.
    Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AM, Taudorf S, Secher NH, Pilegaard H, Bruunsgaard H, Pedersen BK (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50:431–438PubMedCrossRefGoogle Scholar
  21. 21.
    Fujinami A, Ohta K, Obayashi H, Fukui M, Hasegawa G, Nakamura N, Kozai H, Imai S, Ohta M (2008) Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: relationship to glucose metabolism and biomarkers of insulin resistance. Clin Biochem 41:812–817PubMedCrossRefGoogle Scholar
  22. 22.
    Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J, Burton LE, Stanton BR, Kaplan DR, Hunter T, Nikolics K, Parada LF (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the TrkB tyrosine kinase receptor. Cell 65:895–903PubMedCrossRefGoogle Scholar
  23. 23.
    Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, Meuth S, Nagy A, Greene RW, Nestler EJ (2004) Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 101:10827–10832PubMedCrossRefGoogle Scholar
  24. 24.
    Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606PubMedCrossRefGoogle Scholar
  25. 25.
    Duman RS, Malberg J, Nakagawa S, D’Sa C (2000) Neuronal plasticity and survival in mood disorders. Biol Psychiatry 48:732–739PubMedCrossRefGoogle Scholar
  26. 26.
    Shoval G, Weizman A (2005) The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol 15:319–329PubMedCrossRefGoogle Scholar
  27. 27.
    Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S (2005) Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 255:381–386PubMedCrossRefGoogle Scholar
  28. 28.
    Aydemir O, Deveci A, Taskin OE, Taneli F, Esen-Danaci A (2007) Serum brain-derived neurotrophic factor level in dysthymia: a comparative study with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 31:1023–1026PubMedCrossRefGoogle Scholar
  29. 29.
    Kim YK, Lee HP, Won SD, Park EY, Lee HY, Lee BH, Lee SW, Yoon D, Han C, Kim DJ, Choi SH (2007) Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuropsychopharmacol Biol Psychiatry 31:78–85PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshimura R, Mitoma M, Sugita A, Hori H, Okamoto T, Umene W, Ueda N, Nakamura J (2007) Effects of paroxetine or milnacipran on serum brain-derived neurotrophic factor in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 31:1034–1037PubMedCrossRefGoogle Scholar
  31. 31.
    Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, Squitieri F, Silani V (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet B Neuropsychiatr Genet 144B:574–577PubMedCrossRefGoogle Scholar
  32. 32.
    Cukor D, Coplan J, Brown C, Peterson RA, Kimmel PL (2008) Course of depression and anxiety diagnosis in patients treated with hemodialysis: a 16-month follow-up. Clin J Am Soc Nephrol 3:1752–1758PubMedCrossRefGoogle Scholar
  33. 33.
    Agganis BT, Weiner DE, Giang LM, Scott T, Tighiouart H, Griffith JL, Sarnak MJ (2010) Depression and cognitive function in maintenance hemodialysis patients. Am J Kidney Dis 56:704–712PubMedCrossRefGoogle Scholar
  34. 34.
    Daugirdas JT, Van Stone JC, Boag JT (2001) Physiologic principles and urea kinetic modeling. In: Daugirdas JT, Blake PG, Ing TS (eds) Handbook of dialysis, 3rd edn. Lippincott Williams & Wilkins, Baltimore MD, p 29Google Scholar
  35. 35.
    Bartosz G, Bartosz M (1999) Antioxidant activity: what do we measure? Acta Biochim Pol 46:23–29PubMedGoogle Scholar
  36. 36.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237PubMedCrossRefGoogle Scholar
  37. 37.
    Bartosz G (2003) The other face of oxygen. Free radicals in nature. Polish Scientific Publishers (PWN), Warsaw, pp 389–391Google Scholar
  38. 38.
    Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37:247–248PubMedGoogle Scholar
  39. 39.
    Berthoin S, Pelayo P, Baquet G, Marais G, Allender H, Robin H (2002) Plasma lactate recovery from maximal exercise with correction for variations in plasma volume. J Sports Med Phys Fitness 42:26–30PubMedGoogle Scholar
  40. 40.
    McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci 22:295–318PubMedCrossRefGoogle Scholar
  41. 41.
    Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709PubMedCrossRefGoogle Scholar
  42. 42.
    Kafitz KW, Rose CR, Thoenen H, Konnerth A (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401:918–921PubMedCrossRefGoogle Scholar
  43. 43.
    Alonso M, Vianna MR, Izquierdo I, Medina JH (2002) Signaling mechanisms mediating BDNF modulation of memory formation in vivo in the hippocampus. Cell Mol Neurobiol 22:663–674PubMedCrossRefGoogle Scholar
  44. 44.
    Kossel AH, Cambridge SB, Wagner U, Bonhoeffer T (2001) A caged Ab reveals an immediate/instructive effect of BDNF during hippocampal synaptic potentiation. Proc Natl Acad Sci USA 98:14702–14707 Erratum in: Proc Natl Acad Sci USA (2002) 99:541Google Scholar
  45. 45.
    Lee JL, Everitt BJ, Thomas KL (2004) Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304:839–843PubMedCrossRefGoogle Scholar
  46. 46.
    Santhanam AV, Smith LA, Katusic ZS (2010) Brain-derived neurotrophic factor stimulates production of prostacyclin in cerebral arteries. Stroke 41:350–356PubMedCrossRefGoogle Scholar
  47. 47.
    Gryglewski RJ (1980) Prostaglandins, platelets, and atherosclerosis. CRC Crit Rev Biochem 7:291–338PubMedCrossRefGoogle Scholar
  48. 48.
    Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15PubMedCrossRefGoogle Scholar
  49. 49.
    Chlopicki S, Swies J, Mogielnicki A, Buczko W, Bartus M, Lomnicka M, Adamus J, Gebicki J (2007) 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. Br J Pharmacol 152:230–239PubMedCrossRefGoogle Scholar
  50. 50.
    Zoladz JA, Majerczak J, Duda K, Chłopicki S (2010) Endurance training increases exercise-induced prostacyclin release in young, healthy men-relationship with VO2max. Pharmacol Rep 62:494–502PubMedGoogle Scholar
  51. 51.
    Weiner DE, Scott TM, Giang LM, Agganis BT, Sorensen EP, Tighiouart H, Sarnak MJ (2011) Cardiovascular disease and cognitive function in maintenance hemodialysis patients. Am J Kidney Dis 58:773–781PubMedCrossRefGoogle Scholar
  52. 52.
    Begliuomini S, Lenzi E, Ninni F, Casarosa E, Merlini S, Pluchino N, Valentino V, Luisi S, Luisi M, Genazzani AR (2008) Plasma brain-derived neurotrophic factor daily variations in men: correlation with cortisol circadian rhythm. J Endocrinol 197:429–435PubMedCrossRefGoogle Scholar
  53. 53.
    Choi SW, Bhang S, Ahn JH (2011) Diurnal variation and gender differences of plasma brain-derived neurotrophic factor in healthy human subjects. Psychiatry Res 186:427–430PubMedCrossRefGoogle Scholar
  54. 54.
    Braun A, Lommatzsch M, Mannsfeldt A, Neuhaus-Steinmetz U, Fischer A, Schnoy N, Lewin GR, Renz H (1999) Cellular sources of enhanced brain-derived neurotrophic factor production in a mouse model of allergic inflammation. Am J Respir Cell Mol Biol 4:537–546Google Scholar
  55. 55.
    Gielen A, Khademi M, Muhallab S, Olsson T, Piehl F (2003) Increased brain-derived neurotrophic factor expression in white blood cells of relapsing-remitting multiple sclerosis patients. Scand J Immunol 57:493–497PubMedCrossRefGoogle Scholar
  56. 56.
    Lee DM, Jackson KW, Knowlton N, Wages J, Alaupovic P, Samuelsson O, Saeed A, Centola M, Attman PO (2011) Oxidative stress and inflammation in renal patients and healthy subjects. PLoS ONE 6:e22360PubMedCrossRefGoogle Scholar
  57. 57.
    Montuschi P, Barnes PJ, Roberts LJ 2nd (2004) Isoprostanes: markers and mediators of oxidative stress. FASEB J 18:1791–1800PubMedCrossRefGoogle Scholar
  58. 58.
    Zanetti M, Barazzoni R, Gortan Cappellari G, Burekovic I, Bosutti A, Stocca A, Bianco F, Ianche M, Panzetta G, Guarnieri G (2011) Hemodialysis induces p66(shc) gene expression in nondiabetic humans: correlations with oxidative stress and systemic inflammation. J Ren Nutr 21:401–409PubMedCrossRefGoogle Scholar
  59. 59.
    Errakonda PR, Paladugu R, Bitla AR, Musturu SM, Lakshman J, Pemmaraju SR, Vishnubhotla S (2011) Effect of a single hemodialysis session on endothelial dysfunction. J Nephrol 24:83–90PubMedCrossRefGoogle Scholar
  60. 60.
    Libetta C, Sepe V, Esposito P, Galli F, Dal Canton A (2011) Oxidative stress and inflammation: implications in uremia and hemodialysis. Clin Biochem 44:1189–1198PubMedCrossRefGoogle Scholar
  61. 61.
    Zhao HF, Li Q, Li Y (2011) Long-term ginsenoside administration prevents memory loss in aged female C57BL/6 J mice by modulating the redox status and up-regulating the plasticity-related proteins in hippocampus. Neuroscience 183:189–202PubMedCrossRefGoogle Scholar
  62. 62.
    You Z, Luo C, Zhang W, Chen Y, He J, Zhao Q, Zuo R, Wu Y (2011) Pro- and anti-inflammatory cytokines expression in rat’s brain and spleen exposed to chronic mild stress: involvement in depression. Behav Brain Res 225:135–141PubMedCrossRefGoogle Scholar
  63. 63.
    Neeper SA, Gómez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373:109PubMedCrossRefGoogle Scholar
  64. 64.
    Liu YF, Chen HI, Wu CL, Kuo YM, Yu L, Huang AM, Wu FS, Chuang JI, Jen CJ (2009) Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. J Physiol 587:3221–3231PubMedCrossRefGoogle Scholar
  65. 65.
    Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K (2008) Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol 59(Suppl 7):119–132PubMedGoogle Scholar
  66. 66.
    Rojas Vega S, Abel T, Lindschulten R, Hollmann W, Bloch W, Strüder HK (2008) Impact of exercise on neuroplasticity-related proteins in spinal cord injured humans. Neuroscience 153:1064–1070PubMedCrossRefGoogle Scholar
  67. 67.
    Matthews VB, Aström MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerström T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA (2009) Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409–1418PubMedCrossRefGoogle Scholar
  68. 68.
    Ferris LT, Williams JS, Shen CL (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39:728–734PubMedCrossRefGoogle Scholar
  69. 69.
    Zoladz JA, Pilc A (2010) The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol 61:533–541PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jerzy A. Zoladz
    • 1
    • 1
  • Michał Śmigielski
    • 2
  • Joanna Majerczak
    • 1
  • Łukasz R. Nowak
    • 3
  • Justyna Zapart-Bukowska
    • 1
  • Olgierd Smoleński
    • 2
    • 4
  • Jan Kulpa
    • 3
  • Krzysztof Duda
    • 3
  • Joanna Drzewińska
    • 5
  • Grzegorz Bartosz
    • 5
  1. 1.Department of Physiology and Biochemistry, Faculty of RehabilitationUniversity School of Physical Education KrakówKrakówPoland
  2. 2.Dialysis Center Fresenius Nephrocare II, Rydygier HospitalKrakówPoland
  3. 3.Center of Oncology, M. Sklodowska-Curie Memorial Institute, Kraków DivisionKrakówPoland
  4. 4.Department of Clinical Rehabilitation, Faculty of RehabilitationUniversity School of Physical Education KrakówKrakówPoland
  5. 5.Department of Molecular BiophysicsUniversity of ŁódzŁódzPoland

Personalised recommendations