Neurochemical Research

, Volume 37, Issue 12, pp 2678–2685 | Cite as

Quantitative Mass Spectrometry Analysis Reveals that Deletion of the TRPV1 Receptor in Mice Alters Substance P and Neurokinin A Expression in the Central Nervous System

  • Floriane Pailleux
  • Jérôme Lemoine
  • Francis BeaudryEmail author
Original Paper


Vanilloid receptors have a central role in the processing of nociceptive stimuli. TRPV1 null mice showed significant decrease in response to heat noxious stimuli. However, thermal sensitivity is still present suggesting that the TRPV1 is not an exclusive transducer of thermal stimuli. Additionally, tachykinin peptides play a central role in pain processing and expression levels may also contribute in modifying the pain threshold. The LC–MS/MS analysis revealed that SP and NKA were significantly down-regulated in TRPV1−/− in spinal cord and brain tissues. In spinal cord, SP concentrations were 23.4 % lower (p < 0.0049) and NKA concentrations were 22.0 % lower (p < 0.0022) in TRPV1 null mice. Additionally, brain SP concentrations were 26.9 % lower (p < 0.0260) and brain NKA concentrations were 31.9 % lower (p < 0.0063) in TRPV1 null mice. These results clearly demonstrate that TPRV1 null mice exhibit lower SP and NKA concentrations in the central nervous system. The deficit of thermal responses may also be related to the down-regulations of SP and NKA.


TRPV1 Nociceptors Tachykinins Pain Mass spectrometry 



Acetic anhydride


Central nervous system


Formic acid


High-performance liquid chromatography


Mass to charge ratio


Multiple reaction monitoring


Mass spectrometry


Neurokinin 1 receptor


Neurokinin 2 receptor


Neurokinin A


Substance P


Trifluoroacetic acid


Transient receptor potential vanilloid 1


Wild type



This work was funded by the National Sciences and Engineering Research Council of Canada (F. Beaudry NSERC Discovery grant No. 386637-2010). F. Pailleux received a scholarship from the Coopération et mobilité Internationales Rhône-Alpes (CMIRA).


  1. 1.
    Steen KH, Reeh PW, Anton F, Handwerker HO (1992) Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptor in rat skin, in vitro. J Neurosci 12(1):86–95PubMedGoogle Scholar
  2. 2.
    García-Hirschfeld J, López-Briones LG, Belmonte C, Valdeolmillos M (1995) Intracellular free calcium responses to protons and capsaicin in cultured trigeminal neurons. Neuroscience 67(1):235–243PubMedCrossRefGoogle Scholar
  3. 3.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshimura M, Yonehara N (2001) Influence of capsaicin cream in rats with peripheral neuropathy. Pharmacol Res 44(2):105–111PubMedCrossRefGoogle Scholar
  5. 5.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  6. 6.
    Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51(2):159–211PubMedGoogle Scholar
  7. 7.
    Van Der Stelt M, Di Marzo V (2004) Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. Eur J Biochem 271:1827–1834CrossRefGoogle Scholar
  8. 8.
    Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24:739–768PubMedCrossRefGoogle Scholar
  9. 9.
    Levine JD, Fields HL, Basbaum AI (1993) Peptides and the primary afferent nociceptor. J Neurosci 13(6):2273–2286PubMedGoogle Scholar
  10. 10.
    Martin WJ, Cao Y, Basbaum AI (2004) Characterization of wide dynamic range neurons in the deep dorsal horn of the spinal cord in preprotachykinin-a null mice in vivo. J Neurophysiol 91(5):1945–1954PubMedCrossRefGoogle Scholar
  11. 11.
    Patacchini R, Maggi CA (1995) Tachykinin receptors and receptor subtypes. Arch Int Phamacodyn Thér 329(1):161–184Google Scholar
  12. 12.
    Trafton JA, Abbadie C, Basbaum AI (2001) Differential contribution of substance P and neurokinin A to spinal cord neurokinin-1 receptor signaling in the rat. J Neurosci 21(10):3656–3664PubMedGoogle Scholar
  13. 13.
    Baumbauer KM, Young EE, Joynes RL (2009) Pain and learning in a spinal system: contradictory outcomes from common origins. Brain Res Rev 61(2):124–143PubMedCrossRefGoogle Scholar
  14. 14.
    Louis C, Stemmelin J, Boulay D et al (2008) Additional evidence for anxiolytic- and antidepressant-like activities of saredutant (SR48968), an antagonist at the neurokinin-2 receptor in various rodent-models. Pharmacol Biochem Behav 89(1):36–45PubMedCrossRefGoogle Scholar
  15. 15.
    Saarto T, Wiffen PJ (2010) Antidepressants for neuropathic pain: a Cochrane review. J Neurol Neurosur Psychiatr 81(12):1372–1373CrossRefGoogle Scholar
  16. 16.
    Micó J, Ardid D, Berrocoso E (2006) Antidepressants and pain. Trends Pharmacol Sci 27(7):348–354PubMedCrossRefGoogle Scholar
  17. 17.
    Dickenson AH (1995) Spinal cord pharmacology of pain. Bri J Anaesth 75:193–200CrossRefGoogle Scholar
  18. 18.
    Seybold VS (2009) The role of peptides in central sensitization. Handb Exp Pharmacol 194:451–491PubMedCrossRefGoogle Scholar
  19. 19.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313PubMedCrossRefGoogle Scholar
  20. 20.
    Eckert WA III, Julius D, Basbaum AI (2006) Differential contribution of TRPV1 to thermal responses and tissue injury-induced sensitization of dorsal horn neurons in laminae I and V in the mouse. Pain 126(1–3):184–197PubMedCrossRefGoogle Scholar
  21. 21.
    Craig AD, Lamina I (2004) But not lamina V, spinothalamic neurons exhibit responses that correspond with burning pain. J Neurophysiol 92:2604–2609PubMedCrossRefGoogle Scholar
  22. 22.
    Che FY, Fricker LD (2002) Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry. Anal Chem 74(13):3190–3198PubMedCrossRefGoogle Scholar
  23. 23.
    Beaudry F (2010) Stability comparison between sample preparation procedures for mass spectrometry-based targeted or shotgun peptidomic analysis. Anal Biochem 407(2):290–292PubMedCrossRefGoogle Scholar
  24. 24.
    Beaudry F, Ferland CE, Vachon P (2009) Identification, characterization and quantification of specific neuropeptides in rat spinal cord by liquid chromatography electrospray quadrupole ion trap mass spectrometry. Biomed Chromatogr 23:940–950PubMedCrossRefGoogle Scholar
  25. 25.
    Nawa H, Kotani H, Nakanishi S (1985) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312:729–734CrossRefGoogle Scholar
  26. 26.
    Zimmer A, Zimmer AM, Baffi J, Usdin T, Reynolds K, König M, Palkovits M, Mezey E (1998) Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci USA 95(5):2630–2635PubMedCrossRefGoogle Scholar
  27. 27.
    Mantyh PW, Rogers SD, Honore P, Allen BJ, Ghilardi JR, Li J, Daughters RS, Lappi DA, Wiley RG, Simone DA (1997) Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278:275–279PubMedCrossRefGoogle Scholar
  28. 28.
    Ferland CE, Beaudry F, Vachon P., Antinociceptive effects of eugenol evaluated in a monoiodoacetate-induced osteoarthritis rat model. Phytother Res (in press)Google Scholar
  29. 29.
    Ferland CE, Pailleux F, Vachon P, Beaudry F (2011) Determination of specific neuropeptides modulation time course in a rat model of osteoarthritis pain by liquid chromatography ion trap mass spectrometry. Neuropeptides 45:423–429PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Floriane Pailleux
    • 1
    • 2
  • Jérôme Lemoine
    • 2
  • Francis Beaudry
    • 1
    Email author
  1. 1.Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaireUniversité de MontréalSaint-HyacintheCanada
  2. 2.UMR 5280 CNRS Université de Lyon 1, Institut des Sciences AnalytiquesUniversité de LyonVilleurbanne cedexFrance

Personalised recommendations