Advertisement

Neurochemical Research

, Volume 37, Issue 8, pp 1761–1767 | Cite as

Total Antioxidant Status Correlates with Cognitive Impairment in Patients with Recurrent Depressive Disorder

  • Monika Talarowska
  • Piotr Gałecki
  • Michael Maes
  • Kinga Bobińska
  • Edward Kowalczyk
Original Paper

Abstract

Depressive disorder is a multifactorial diseases, that one of the typical feature are cognitive impairments. The aim of this study was to determine the total antioxidant status (TAS) in patients with recurrent depressive disorder (rDD) and to define relationship between plasma levels of TAS and the cognitive performance. Design and methods: the study comprised 74 subjects: patients with rDD (n = 45) and healthy subjects (n = 29). Cognitive function assessment was based on: Trail Making Test, The Stroop Test, Verbal Fluency Test and Auditory Verbal Learning Test. Statistically significant differences were found in the intensity of depression symptoms, measured by the Hamilton Depression Rating Scale (HDRS) on therapy onset versus the examination results after 8 weeks of treatment (p < 0.001). The level of TAS was substantially higher in patients with rDD (p = 0.01). For rDD patients, elevated TAS levels were associated with worse cognitive test performance. The higher was the concentration of plasma TAS, the greater was the severity of depressive symptoms measured by HDRS before and after pharmacotherapy. (1) Higher concentration of plasma TAS in rDD patients is associated with the severity of depressive symptoms. (2) Elevated levels of plasma TAS are related to impairment of short-term declarative memory, long-term declarative-memory, verbal fluency and working memory.

Keywords

Depression Total antioxidant status Cognitive impairment Inflammation 

Notes

Acknowledgments

This research was supported by scientific research grant National Science Center No. 2011/01/D/HS6/05484.

References

  1. 1.
    Audenaert LohorteP, Brans B, Van Laere K, Goethals I, van Heeringen K et al (2001) The classical Stroop interference task as a prefrontal activation probe: a validation study using 99Tc′′′-ECD brain SPECT. Nucl Med Commun 22:135–143PubMedCrossRefGoogle Scholar
  2. 2.
    Bartosz G (2004) Other face of oxygen. PWN, WarsawGoogle Scholar
  3. 3.
    Benzie I, Strain J (1999) Ferric reducing/antioxidant power assay: antioxidant activity of biological fluids and modified version for simultaneous measurement of total power and ascorbic acid concentration. Methods Enzymol 299:15–27PubMedCrossRefGoogle Scholar
  4. 4.
    Benzie I, Strain J (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76PubMedCrossRefGoogle Scholar
  5. 5.
    Blugeot A, Rivat C, Bouvier E, Molet J, Mouchard A, Zeau B et al (2011) Vulnerability to depression: from brain neuroplasticity to identification of biomarkers. J Neurosci 7:12889–12899CrossRefGoogle Scholar
  6. 6.
    Butterfield DA, Reed T, Perluigi M, De Marco C, Coccia R, Cini C et al (2006) Elevated protein-bound levels of the lipid peroxidation product 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 397:170–173PubMedCrossRefGoogle Scholar
  7. 7.
    Clausen A, Doctrow S, Baudry M (2008) Prevention of cognitive deficits and brain oxidative stress with superoxide dismutase/catalase mimetics in aged mice. Neurobiol Aging 31:425–433PubMedCrossRefGoogle Scholar
  8. 8.
    Considine CM, Weisenbach SL, Walker SJ, McFadden EM, Franti LM, Bieliauskas LA et al (2011) Auditory memory decrements, without dissimulation, among patients with major depressive disorder. Arch Clin Neuropsychol 26:445–453PubMedCrossRefGoogle Scholar
  9. 9.
    Cruz-Sánchez FF, Gironès X, Ortega A, Alameda F, Lafuente JV (2010) Oxidative stress in Alzheimer’s disease hippocampus: a topographical study. J Neurol Sci 299:163–167PubMedCrossRefGoogle Scholar
  10. 10.
    Cumurcu BE, Ozyurt H, Etikan I, Demir S, Karlidag R (2009) Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment. Psychiatry Clin Neurosci 63:639–645PubMedCrossRefGoogle Scholar
  11. 11.
    Demyttenaere K, De Fruyt J (2003) Getting what you ask for: on the selectivity of depression rating scales. Psychother Psychosom 72:61–70PubMedCrossRefGoogle Scholar
  12. 12.
    Floyd RA, Towner RA, He T, Hensley K, Maples KR (2011) Translational research involving oxidative stress and diseases of aging. Free Radic Biol Med 51:931–941PubMedCrossRefGoogle Scholar
  13. 13.
    Fuchs E, Flügge G (2002) Social stress in tree shrews: effect on physiology, brain function and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258PubMedCrossRefGoogle Scholar
  14. 14.
    Gałecki P, Szemraj J, Bieńkiewicz M, Zboralski K, Gałecka E (2009) Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 24:277–286PubMedCrossRefGoogle Scholar
  15. 15.
    Gałecki P, Szemraj J, Bieńkiewicz M, Florkowski A, Gałecka E (2009) Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep 61:436–447PubMedGoogle Scholar
  16. 16.
    Gironi M, Bianchi A, Russo A, Alberoni M, Ceresa L, Angelini A et al (2011) Oxidative imbalance in different neurodegenerative diseases with memory impairment. Neurodegener Dis 8:129–137PubMedCrossRefGoogle Scholar
  17. 17.
    Guidi I, Galimberti D, Lonati S, Novembrino C, Bamonti F, Tiriticco M et al (2006) Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 27:262–269PubMedCrossRefGoogle Scholar
  18. 18.
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatr 23:56–62PubMedCrossRefGoogle Scholar
  19. 19.
    ICD-10 (1993) Classification of Mental and Behavioural Disorders. World Health Organization, GenevaGoogle Scholar
  20. 20.
    Insel KC, Moore IM, Vidrine AN, Montgomery DW (2011) Biomarkers for cognitive aging-part II: oxidative stress, cognitive assessments, and medication adherence. Biol Res Nurs. doi: 10.1177/1099800411406527 Google Scholar
  21. 21.
    Kaymak SU, Demir B, Sentürk S, Tatar I, Aldur MM, Uluğ B (2010) Hippocampus, glucocorticoids and neurocognitive functions in patients with first-episode major depressive disorders. Eur Arch Psychiatry Clin Neurosci 260:217–223PubMedCrossRefGoogle Scholar
  22. 22.
    Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA (2008) Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 10:1–37PubMedCrossRefGoogle Scholar
  23. 23.
    Kotan VO, Sarandol E, Kirhan E, Ozkaya G, Kirli S (2011) Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuropsychopharmacol Biol Psychiatry 35:1284–1290PubMedCrossRefGoogle Scholar
  24. 24.
    Łuria A (1976) Neuropsychology. PZWL, WarsawGoogle Scholar
  25. 25.
    Lyche P, Jonassen R, Stiles TC, Ulleberg P, Landrø NI (2011) Verbal memory functions in unipolar major depression with and without co-morbid anxiety. Clin Neuropsychol 25:359–375PubMedCrossRefGoogle Scholar
  26. 26.
    Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692PubMedCrossRefGoogle Scholar
  27. 27.
    Malykhin NV, Carter R, Seres P, Coupland NJ (2010) Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. J Psychiatry Neurosci 35:337–343PubMedCrossRefGoogle Scholar
  28. 28.
    Marazziti D, Consoli G, Picchetti M, Carlini M, Faravelli L (2010) Cognitive impairment in major depression. Eur J Pharmacol 626:83–86PubMedCrossRefGoogle Scholar
  29. 29.
    McDowd J, Hoffman L, Rozek E, Lyons KE, Pahwa R, Burns J et al (2011) Understanding verbal fluency in healthy aging, Alzheimer’s disease, and Parkinson’s disease. Neuropsychol 25(2):210–225CrossRefGoogle Scholar
  30. 30.
    Nicolle MM, Gonzalez J, Sugaya K, Baskerville KA, Bryan D, Lund K et al (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neurosci 107:415–431CrossRefGoogle Scholar
  31. 31.
    Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA et al (2007) Neuronal death and survival under oxidative stress in Alzheimer disease. CNS Neurol Disord: Drug Targets 6:411–423CrossRefGoogle Scholar
  32. 32.
    Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10PubMedCrossRefGoogle Scholar
  33. 33.
    Patten S (1997) Performance of the composite international diagnostic interview short Form for major depression in community and clinical samples. Chronic Dis Can 3:18–24Google Scholar
  34. 34.
    Sánchez-Cubillo I, Periáñez J, Adrover-Roig D, Rodríguez-Sánchez J, Ríos-Lago M, Tirapu J (2009) Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc 15:438–451PubMedCrossRefGoogle Scholar
  35. 35.
    Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22:67–73PubMedCrossRefGoogle Scholar
  36. 36.
    Sekler A, Jiménez JM, Rojo L, Pastene E, Fuentes P, Slachevsky A et al (2008) Cognitive impairment and Alzheimer’s disease: links with oxidative stress and cholesterol metabolism. J Neuropsychiatric Dis Treat 4:715–722Google Scholar
  37. 37.
    Talarowska M, Florkowski A, Zboralski K, Berent D, Wierzbiński P, Gałecki P (2010) Auditory-verbal declarative and operating memory among patients suffering from depressive disorders—preliminary study. Adv Med Sci 55:317–327PubMedCrossRefGoogle Scholar
  38. 38.
    Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, Moreira WL et al (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alz Dis 26:59–68Google Scholar
  39. 39.
    Uysal N, Tugyan K, Aksu I, Ozbal S, Ozdemir D, Dayi A et al (2012) Age-related changes in apoptosis in rat hippocampus induced by oxidative stress. J Biotech Histochem 87(2):98–104CrossRefGoogle Scholar
  40. 40.
    Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psych 161:1957–1966CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Monika Talarowska
    • 1
  • Piotr Gałecki
    • 1
  • Michael Maes
    • 2
  • Kinga Bobińska
    • 1
  • Edward Kowalczyk
    • 3
  1. 1.Department of Adult PsychiatryMedical University of LodzLodzPoland
  2. 2.Maes Clinics @ TRIAPiyavate HospitalBangkokThailand
  3. 3.Department of Pharmacology and ToxicologyMedical University of LodzLodzPoland

Personalised recommendations