Neurochemical Research

, Volume 37, Issue 11, pp 2351–2363 | Cite as

Exocytosis in Astrocytes: Transmitter Release and Membrane Signal Regulation

  • Alenka Guček
  • Nina Vardjan
  • Robert ZorecEmail author


Astrocytes, a type of glial cells in the brain, are eukaryotic cells, and a hallmark of these are subcellular organelles, such as secretory vesicles. In neurons vesicles play a key role in signaling. Upon a stimulus—an increase in cytosolic concentration of free Ca2+ ([Ca2+]i)—the membrane of vesicle fuses with the presynaptic plasma membrane, allowing the exit of neurotransmitters into the extracellular space and their diffusion to the postsynaptic receptors. For decades it was thought that such vesicle-based mechanisms of gliotransmitter release were not present in astrocytes. However, in the last 30 years experimental evidence showed that astrocytes are endowed with mechanisms for vesicle- and non-vesicle-based gliotransmitter release mechanisms. The aim of this review is to focus on exocytosis, which may play a role in gliotransmission and also in other forms of cell-to-cell communication, such as the delivery of transporters, ion channels and antigen presenting molecules to the cell surface.


Astrocytes Exocytosis Vesicle dynamics Gliotransmitter Membrane signals 



This work was supported by the grants P3 310, J3 4051, J3 3632 and J3 4146 from the Slovenian Research Agency (ARRS), CipKeBip and the EduGlia ITN EU grant.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Parpura V, Verkhratsky A (2011) The astrocyte excitability brief: from receptors to gliotransmission. Neurochem Int. doi: 10.1016/j.neuint.2011.12.001
  2. 2.
    Verkhratsky A et al (2011) Where the thoughts dwell: the physiology of neural-glial “diffuse neural net”. Brain Res Rev 66:133–155PubMedCrossRefGoogle Scholar
  3. 3.
    Cornell-Bell AH et al (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473PubMedCrossRefGoogle Scholar
  4. 4.
    Dani JW et al (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440PubMedCrossRefGoogle Scholar
  5. 5.
    Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771PubMedCrossRefGoogle Scholar
  6. 6.
    Parpura V et al (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747PubMedCrossRefGoogle Scholar
  7. 7.
    Araque A et al (1998) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142PubMedCrossRefGoogle Scholar
  8. 8.
    Domingues AM et al (2010) Glia as transmitter sources and sensors in health and disease. Neurochem Int 57:359–366PubMedCrossRefGoogle Scholar
  9. 9.
    Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92PubMedCrossRefGoogle Scholar
  10. 10.
    Smith K (2010) Neuroscience: settling the great glia debate. Nature 468:160–162PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper GM (2000) The origin and evolution of cells. Sunderland, MassachusettsGoogle Scholar
  12. 12.
    Yoon HS et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818PubMedCrossRefGoogle Scholar
  13. 13.
    Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145PubMedCrossRefGoogle Scholar
  14. 14.
    Sabatini BL, Regehr WG (1999) Timing of synaptic transmission. Annu Rev Physiol 61:521–542PubMedCrossRefGoogle Scholar
  15. 15.
    Vardjan N et al (2009) The fusion pore and vesicle cargo discharge modulation. Ann N Y Acad Sci 1152:135–144PubMedCrossRefGoogle Scholar
  16. 16.
    Kreft M et al (2003) Properties of exocytotic response in vertebrate photoreceptors. J Neurophysiol 90:218–225PubMedCrossRefGoogle Scholar
  17. 17.
    Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716PubMedCrossRefGoogle Scholar
  18. 18.
    Kreft M et al (2004) Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 46:437–445PubMedCrossRefGoogle Scholar
  19. 19.
    Bollmann JH et al (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957PubMedCrossRefGoogle Scholar
  20. 20.
    Heidelberger R et al (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371:513–515PubMedCrossRefGoogle Scholar
  21. 21.
    Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893PubMedCrossRefGoogle Scholar
  22. 22.
    Young SM, Neher E (2009) Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63:482–496PubMedCrossRefGoogle Scholar
  23. 23.
    Jean YY et al (2008) Glutamate elicits release of BDNF from basal forebrain astrocytes in a process dependent on metabotropic receptors and the PLC pathway. Neuron Glia Biol 4:35–42PubMedCrossRefGoogle Scholar
  24. 24.
    Hua X et al (2004) Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes. J Neurosci Res 76:86–97PubMedCrossRefGoogle Scholar
  25. 25.
    MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347PubMedCrossRefGoogle Scholar
  26. 26.
    Yaguchi T, Nishizaki T (2010) Extracellular high K+ stimulates vesicular glutamate release from astrocytes by activating voltage-dependent calcium channels. J Cell Physiol 225:512–518PubMedCrossRefGoogle Scholar
  27. 27.
    Akopian G et al (1996) Identified glial cells in the early postnatal mouse hippocampus display different types of Ca2+ currents. Glia 17:181–194PubMedCrossRefGoogle Scholar
  28. 28.
    Golovina VA (2005) Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 564:737–749PubMedCrossRefGoogle Scholar
  29. 29.
    Malarkey EB et al (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835PubMedCrossRefGoogle Scholar
  30. 30.
    Shigetomi E et al (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80PubMedCrossRefGoogle Scholar
  31. 31.
    Lalo U et al (2011) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002PubMedCrossRefGoogle Scholar
  32. 32.
    Minelli A et al (2007) Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41:221–234PubMedCrossRefGoogle Scholar
  33. 33.
    Goldman WF et al (1994) Sodium/calcium exchange in rat cortical astrocytes. J Neurosci 14:5834–5843PubMedGoogle Scholar
  34. 34.
    Axelrod J (1974) Neurotransmitters. Sci Am 230:59–71PubMedCrossRefGoogle Scholar
  35. 35.
    Do KQ et al (1997) Beta-Adrenergic stimulation promotes homocysteic acid release from astrocyte cultures: evidence for a role of astrocytes in the modulation of synaptic transmission. J Neurochem 68:2386–2394PubMedCrossRefGoogle Scholar
  36. 36.
    Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640PubMedCrossRefGoogle Scholar
  37. 37.
    Martin ED et al (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55:36–45PubMedCrossRefGoogle Scholar
  38. 38.
    Hertz L et al (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417–428PubMedCrossRefGoogle Scholar
  39. 39.
    Westergaard N et al (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 17:160–168PubMedCrossRefGoogle Scholar
  40. 40.
    Montana V et al (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24:2633–2642PubMedCrossRefGoogle Scholar
  41. 41.
    Fremeau RT Jr et al (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493PubMedCrossRefGoogle Scholar
  42. 42.
    Anlauf E, Derouiche A (2005) Astrocytic exocytosis vesicles and glutamate: a high-resolution immunofluorescence study. Glia 49:96–106PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang Q et al (2004) Fusion-related release of glutamate from astrocytes. J Biol Chem 279:12724–12733PubMedCrossRefGoogle Scholar
  44. 44.
    Bezzi P et al (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620PubMedCrossRefGoogle Scholar
  45. 45.
    Crippa D et al (2006) Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 570:567–582PubMedCrossRefGoogle Scholar
  46. 46.
    Wolosker H et al (1999) Purification of serine racemase: biosynthesis of the neuromodulator d-serine. Proc Natl Acad Sci USA 96:721–725PubMedCrossRefGoogle Scholar
  47. 47.
    Rosenberg D et al (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24:2951–2961PubMedCrossRefGoogle Scholar
  48. 48.
    Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 1814:1558–1566PubMedCrossRefGoogle Scholar
  49. 49.
    Kartvelishvily E et al (2006) Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J Biol Chem 281:14151–14162PubMedCrossRefGoogle Scholar
  50. 50.
    Oliet SH, Mothet JP (2006) Molecular determinants of d-serine-mediated gliotransmission: from release to function. Glia 54:726–737PubMedCrossRefGoogle Scholar
  51. 51.
    Henneberger C et al (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236PubMedCrossRefGoogle Scholar
  52. 52.
    Vélez-Fort M et al (2011) Central role of GABA in neuron-glia interactions. Neuroscientist. doi: 10.1177/1073858411403317
  53. 53.
    Angulo MC et al (2008) GABA, a forgotten gliotransmitter. Prog Neurobiol 86:297–303PubMedCrossRefGoogle Scholar
  54. 54.
    Lee S et al (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796PubMedCrossRefGoogle Scholar
  55. 55.
    Echigo N, Moriyama Y (2004) Vesicular inhibitory amino acid transporter is expressed in gamma-aminobutyric acid (GABA)-containing astrocytes in rat pineal glands. Neurosci Lett 367:79–84PubMedCrossRefGoogle Scholar
  56. 56.
    Unichenko P et al (2012) Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes. Glia 60:605–614PubMedCrossRefGoogle Scholar
  57. 57.
    Araque A et al (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829PubMedGoogle Scholar
  58. 58.
    Liu T et al (2011) Calcium triggers exocytosis from two types of organelles in a single astrocyte. J Neurosci 31:10593–10601PubMedCrossRefGoogle Scholar
  59. 59.
    Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA 97:8629–8634PubMedCrossRefGoogle Scholar
  60. 60.
    Jahn R, Scheller R (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643PubMedCrossRefGoogle Scholar
  61. 61.
    Stigliani S et al (2006) Glia re-sealed particles freshly prepared from adult rat brain are competent for exocytotic release of glutamate. J Neurochem 96:656–668PubMedCrossRefGoogle Scholar
  62. 62.
    Montana V et al (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715PubMedCrossRefGoogle Scholar
  63. 63.
    Schubert V et al (2011) SNARE protein expression in synaptic terminals and astrocytes in the adult hippocampus: a comparative analysis. Glia 59:1472–1488PubMedCrossRefGoogle Scholar
  64. 64.
    Chen X et al (2005) “Kiss-and-run” glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 25:9236–9243PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang Q et al (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci USA 101:9441–9446PubMedCrossRefGoogle Scholar
  66. 66.
    Maienschein V et al (1999) A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26:233–244PubMedCrossRefGoogle Scholar
  67. 67.
    Stenovec M et al (2007) Ca2+-dependent mobility of vesicles capturing anti-VGLUT1 antibodies. Exp Cell Res 313:3809–3818PubMedCrossRefGoogle Scholar
  68. 68.
    Bergersen LH et al (2011) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex, OxfordGoogle Scholar
  69. 69.
    Xu J et al (2007) Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem 282:24185–24197PubMedCrossRefGoogle Scholar
  70. 70.
    Kang N et al (2005) Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 94:4121–4130PubMedCrossRefGoogle Scholar
  71. 71.
    Bergersen LH, Gundersen V (2009) Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 158:260–265PubMedCrossRefGoogle Scholar
  72. 72.
    Krzan M et al (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583PubMedGoogle Scholar
  73. 73.
    Bowser DN, Khakh BS (2007) Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 104:4212–4217PubMedCrossRefGoogle Scholar
  74. 74.
    Domercq M et al (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281:30684–30696PubMedCrossRefGoogle Scholar
  75. 75.
    Marchaland J et al (2008) Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28:9122–9132PubMedCrossRefGoogle Scholar
  76. 76.
    Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573Google Scholar
  77. 77.
    Pasti L et al (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484PubMedGoogle Scholar
  78. 78.
    Schell MJ et al (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 92:3948–3952PubMedCrossRefGoogle Scholar
  79. 79.
    Mothet JP et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci USA 102:5606–5611PubMedCrossRefGoogle Scholar
  80. 80.
    Martineau M et al (2008) Confocal imaging and tracking of the exocytotic routes for d-serine-mediated gliotransmission. Glia 56:1271–1284PubMedCrossRefGoogle Scholar
  81. 81.
    Dannies PS (1999) Protein hormone storage in secretory granules: mechanisms for concentration and sorting. Endocr Rev 20:3–21PubMedCrossRefGoogle Scholar
  82. 82.
    Calegari F et al (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547PubMedCrossRefGoogle Scholar
  83. 83.
    Ramamoorthy P, Whim MD (2008) Trafficking and fusion of neuropeptide y-containing dense-core granules in astrocytes. J Neurosci 28:13815–13827PubMedCrossRefGoogle Scholar
  84. 84.
    McKenzie JC et al (2001) Atrial natriuretic peptide-like immunoreactivity in neurons and astrocytes of human cerebellum and inferior olivary complex. J Histochem Cytochem 49:1453–1467PubMedCrossRefGoogle Scholar
  85. 85.
    Potter LR et al (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72PubMedCrossRefGoogle Scholar
  86. 86.
    Skowrońska M et al (2010) Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem 115:1068–1076PubMedCrossRefGoogle Scholar
  87. 87.
    Pangrsic T et al (2007) Exocytotic release of ATP from cultured astrocytes. J Biol Chem 282:28749–28758PubMedCrossRefGoogle Scholar
  88. 88.
    Coco S et al (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362PubMedCrossRefGoogle Scholar
  89. 89.
    Stenovec M et al (2004) Slow spontaneous secretion from single large dense-core vesicles monitored in neuroendocrine cells. FASEB J 18:1270–1272PubMedGoogle Scholar
  90. 90.
    Baertschi AJ et al (2001) Acid prohormone sequence determines size, shape, and docking of secretory vesicles in atrial myocytes. Circ Res 89:E23–E29PubMedCrossRefGoogle Scholar
  91. 91.
    Potokar M et al (2008) Stimulation inhibits the mobility of recycling peptidergic vesicles in astrocytes. Glia 56:135–144PubMedCrossRefGoogle Scholar
  92. 92.
    Potokar M et al (2007) Cytoskeleton and vesicle mobility in astrocytes. Traffic 8:12–20PubMedCrossRefGoogle Scholar
  93. 93.
    Potokar M et al (2005) Vesicle mobility studied in cultured astrocytes. Biochem Biophys Res Commun 329:678–683PubMedCrossRefGoogle Scholar
  94. 94.
    Potokar M et al (2010) Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58:1208–1219PubMedGoogle Scholar
  95. 95.
    Potokar M et al (2011) Physiopathologic dynamics of vesicle traffic in astrocytes. Histol Histopathol 26:277–284PubMedGoogle Scholar
  96. 96.
    Stenovec M et al (2011) Amyotrophic lateral sclerosis immunoglobulins G enhance the mobility of Lysotracker-labelled vesicles in cultured rat astrocytes. Acta Physiol (Oxf) 203:457–471CrossRefGoogle Scholar
  97. 97.
    Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedCrossRefGoogle Scholar
  98. 98.
    Soos JM et al (1998) Astrocytes express elements of the class II endocytic pathway and process central nervous system autoantigen for presentation to encephalitogenic T cells. J Immunol 161:5959–5966PubMedGoogle Scholar
  99. 99.
    Robinson MB (2002) Regulated trafficking of neurotransmitter transporters: common notes but different melodies. J Neurochem 80:1–11PubMedCrossRefGoogle Scholar
  100. 100.
    Stenovec M et al (2008) EAAT2 density at the astrocyte plasma membrane and Ca(2+)-regulated exocytosis. Mol Membr Biol 25:203–215PubMedCrossRefGoogle Scholar
  101. 101.
    Bergami M et al (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183:213–221PubMedCrossRefGoogle Scholar
  102. 102.
    Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436PubMedCrossRefGoogle Scholar
  103. 103.
    Verkhratsky A et al (2009) Purinoceptors on neuroglia. Mol Neurobiol 39:190–208PubMedCrossRefGoogle Scholar
  104. 104.
    Prado J et al (2010) Glial cells as sources and targets of natriuretic peptides. Neurochem Int 57:367–374PubMedCrossRefGoogle Scholar
  105. 105.
    Sawada K et al (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA 105:5683–5686PubMedCrossRefGoogle Scholar
  106. 106.
    Larsson M et al (2011) Functional and Anatomical Identification of a vesicular transporter mediating neuronal ATP release. Cereb Cortex, OxfordGoogle Scholar
  107. 107.
    Bal-Price A et al (2002) Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40:312–323PubMedCrossRefGoogle Scholar
  108. 108.
    Abdipranoto A et al (2003) Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate. NeuroReport 14:2177–2181PubMedCrossRefGoogle Scholar
  109. 109.
    Pryazhnikov E, Khiroug L (2008) Sub-micromolar increase in [Ca2+]i triggers delayed exocytosis of ATP in cultured astrocytes. Glia 56:38–49PubMedCrossRefGoogle Scholar
  110. 110.
    Halassa MM et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang Z et al (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953PubMedCrossRefGoogle Scholar
  112. 112.
    Verderio C et al (2011) TI-VAMP/VAMP7 is the snare of secretory lysosomes contributing to ATP secretion from astrocytes. Biol Cell 104:213–228CrossRefGoogle Scholar
  113. 113.
    Potokar M et al (2012) Rab4 and Rab5 GTPase are required for directional mobility of endocytic vesicles in astrocytes. Glia 60:594–604PubMedCrossRefGoogle Scholar
  114. 114.
    Fontana A et al (1984) Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:273–276PubMedCrossRefGoogle Scholar
  115. 115.
    Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204:428–437PubMedCrossRefGoogle Scholar
  116. 116.
    Junyent F et al (2011) Content and traffic of taurine in hippocampal reactive astrocytes. Hippocampus 21:185–197PubMedCrossRefGoogle Scholar
  117. 117.
    Zhou J, Sutherland ML (2004) Glutamate transporter cluster formation in astrocytic processes regulates glutamate uptake activity. J Neurosci 24:6301–6306PubMedCrossRefGoogle Scholar
  118. 118.
    Nakagawa T et al (2008) Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Eur J Neurosci 28:1719–1730PubMedCrossRefGoogle Scholar
  119. 119.
    Leterrier C et al (2004) Constitutive endocytic cycle of the CB1 cannabinoid receptor. J Biol Chem 279:36013–36021PubMedCrossRefGoogle Scholar
  120. 120.
    Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893PubMedCrossRefGoogle Scholar
  121. 121.
    Bezzi P et al (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710PubMedCrossRefGoogle Scholar
  122. 122.
    Osborne KD et al (2009) Dynamic imaging of cannabinoid receptor 1 vesicular trafficking in cultured astrocytes. ASN Neuro 1(5):art:e00022. doi: 10.1042/AN20090040
  123. 123.
    Calì C et al (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91PubMedCrossRefGoogle Scholar
  124. 124.
    Calì C, Bezzi P (2010) CXCR4-mediated glutamate exocytosis from astrocytes. J Neuroimmunol 224:13–21PubMedCrossRefGoogle Scholar
  125. 125.
    Stellwagen D et al (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228PubMedCrossRefGoogle Scholar
  126. 126.
    Parpura V et al (2010) Regulated exocytosis in astrocytic signal integration. Neurochem Int 57:451–459PubMedCrossRefGoogle Scholar
  127. 127.
    Pascual O (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116PubMedCrossRefGoogle Scholar
  128. 128.
    Cali C et al (2008) SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 198:82–91PubMedCrossRefGoogle Scholar
  129. 129.
    Malarkey EB, Parpura V (2011) Temporal characteristics of vesicular fusion in astrocytes: examination of synaptobrevin 2-laden vesicles at single vesicle resolution. J Physiol 589:4271–4300PubMedGoogle Scholar
  130. 130.
    Jorgacevski J et al (2010) Fusion pore stability of peptidergic vesicles. Mol Membr Biol 27:65–80PubMedCrossRefGoogle Scholar
  131. 131.
    Jorgacevski J et al (2011) Munc18-1 tuning of vesicle merger and fusion pore properties. J Neurosci 31:9055–9066PubMedCrossRefGoogle Scholar
  132. 132.
    Vardjan N et al (2007) Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J Neurosci 27:4737–4746PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Celica Biomedical CenterLjubljanaSlovenia
  3. 3.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations