Neurochemical Research

, Volume 37, Issue 8, pp 1624–1630 | Cite as

Folic Acid Prevents Behavioral Impairment and Na+,K+-ATPase Inhibition Caused by Neonatal Hypoxia–Ischemia

  • Jaqueline Vieira Carletti
  • Bruna Ferrary Deniz
  • Patrícia Maidana Miguel
  • Joseane Jiménez Rojas
  • Janaína Kolling
  • Emilene Barros Scherer
  • Angela Teresinha de Souza Wyse
  • Carlos Alexandre Netto
  • Lenir Orlandi Pereira
Original Paper

Abstract

Folic acid plays an important role in neuroplasticity and acts as a neuroprotective agent, as observed in experimental brain ischemia studies. The aim of this study was to investigate the effects of folic acid on locomotor activity, aversive memory and Na+,K+-ATPase activity in the frontal cortex and striatum in animals subjected to neonatal hypoxia–ischemia (HI). Wistar rats of both sexes at postnatal day 7 underwent HI procedure and were treated with intraperitoneal injections of folic acid (0.011 μmol/g body weight) once a day, until the 30th postnatal day. Starting on the day after, behavioral assessment was run in the open field and in the inhibitory avoidance task. Animals were sacrificed by decapitation 24 h after testing and striatum and frontal cortex were dissected out for Na+,K+-ATPase activity analysis. Results show anxiogenic effect in the open field and an impairment of aversive memory in the inhibitory avoidance test in HI rats; folic acid treatment prevented both behavioral effects. A decreased Na+,K+-ATPase activity in striatum, both ipsilateral and contralateral to ischemia, was identified after HI; a total recovery was observed in animals treated with folic acid. A partial recovery of Na+,K+-ATPase activity was yet seen in frontal cortex of HI animals receiving folic acid supplementation. Presented results support that folic acid treatment prevents memory deficit and anxiety-like behavior, as well as prevents Na+,K+-ATPase inhibition in the striatum and frontal cortex caused by neonatal hypoxia–ischemia.

Keywords

Hypoxia–ischemia Folic acid Inhibitory avoidance Na+,K+-ATPase Open-field test 

Notes

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq—Brazil) and (Fundação de Amparo à Pesquisa do estado do Rio Grande do Sul (FAPERGS).

References

  1. 1.
    Mclean C, Ferriero D (2004) Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol 28:425–432. doi: 10.1053/j.semperi.2004.10.005 PubMedCrossRefGoogle Scholar
  2. 2.
    Volpe JJ (2000) Neurology of the Newborn Saunders, 4th edn. W.B. Saunders Company, Philadelphia, pp 217–394Google Scholar
  3. 3.
    Paula S, Vitola AS, Greggio S, Paula D, Mello PB, Lubianca JM, Xavier LL, Fiori HH, Dacosta JC (2009) Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells. Pedriatr Res 65:631–635. doi: 10.1203/PDR.0b013e31819ed5c8 CrossRefGoogle Scholar
  4. 4.
    Carloni S, Perrone S, Buonocore G, Longini M, Proietti F, Balduini W (2007) Melatonin protects from the long-term consequences of a neonatal hypoxic–ischemic brain injury in rats. J Pienal Res 44:157–167. doi: 10.1111/j.1600-079X.2007.00503.x CrossRefGoogle Scholar
  5. 5.
    Halliwell B (1994) Free radicals and antioxidants: a personal view. Nutr Rev 52:253–265. doi: 10.1111/j.1753-4887.1994.tb01453.x PubMedCrossRefGoogle Scholar
  6. 6.
    Wyse ATS, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975. doi: 10.1023/A:1007504525301 CrossRefGoogle Scholar
  7. 7.
    Vannucci RC (2000) Hypoxic–ischemic encephalopathy. Am J Perinatol 17:113–120. doi: 10.1055/s-2000-9293 PubMedCrossRefGoogle Scholar
  8. 8.
    Pereira LO, Arteni NS, Petersen RC, Rocha AP, Achaval M, Netto CA (2007) Effects of daily environmental enrichment on memory déficits and brain injury following neonatal hypoxia–ischemia in the rat. Neurobiol Learn Mem 87:101–108. doi: 10.1016/j.nlm.2006.07.003 PubMedCrossRefGoogle Scholar
  9. 9.
    Pereira LO, Strapasson ACP, Nabinger PM, Achaval M, Netto CA (2008) Early enriched housing results in partial recovery of memory deficits in females, but not in males, rats after hypoxia–ischemia. Brain Res 1218:257–266. doi: 10.1016/j.brainres.2008.04.010 PubMedCrossRefGoogle Scholar
  10. 10.
    Arteni NS, Salgueiro J, Torres I, Achaval M, Netto CA (2003) Neonatal cerebral hypóxia–ischemia causes lateralized memory impairment in the adult rat. Brain Res 973:171–178. doi: 10.1016/S0006-8993(03)02436-3 PubMedCrossRefGoogle Scholar
  11. 11.
    Della-morte D, Dave KR, Defazio RA, Bao YC, Raval AP, Perez-Pinzon A (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002. doi: 10.1016/j.neuroscience.2009.01.017 PubMedCrossRefGoogle Scholar
  12. 12.
    Czeizel AE, Dudás I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 26:1832–1835CrossRefGoogle Scholar
  13. 13.
    Paz R, Hernández-Navarro F (2006) Manejo, prevención y control de la anemia megaloblástica secundaria a déficit de ácido fólico. Nutr Hosp 21(1):113–119PubMedGoogle Scholar
  14. 14.
    Bagnyukova TV, Powell CL, Pavliv O, Tryndyak VP, Pogribny IP (2008) Induction of oxidative stress and DNA damage in rat brain a folate/methyl-deficient diet. Brain Res 27(1237):44–51. doi: 10.1016/j.brainres.2008.07.073 CrossRefGoogle Scholar
  15. 15.
    Doshi SN, Ian FWM, Stuart JM, Derek L, Robert GN, Mahmud BK, Malcolm JL, Jonathan G (2002) Folate improves endothelial function in coronary artery disease. An effect mediated by reduction of intracellular superoxide? Arterioscler Thromb Vasc Biol 21:1196–1202. doi: 10.1161/hq0701.092000 CrossRefGoogle Scholar
  16. 16.
    Nakano E, Higgins JA, Powers HJ (2001) Folate protects against oxidative modification of human LDL. Br J Nutr 86:637–639. doi: 10.1079/BJN2001478 PubMedCrossRefGoogle Scholar
  17. 17.
    Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and disorders. Trends Neurosci 26:137–146. doi: 10.1016/S0166-2236(03)00032-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Matté C, Scherer EBS, Stefanello FM, Barschak AG, Vargas CR, Netto CA, Wyse ATS (2007) Concurrent folate treatment prevents Na+, K+-atpase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int J Dev Neurosci 25:545–552. doi: 10.1016/j.ijdevneu.2007.10.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Kohzuki M, Tomimatsu T, Fukuda H, Kanagawa T, Kanzaki T, Shimoya K, Murata Y (2006) Long-term neuroportective effects of carbon dioxide on neonatal rat hypoxicischemic brain injury:an experimental study of skilled motor tasks. Am J Obstet Gynecol 195:240–245. doi: 10.1016/j.ajog.2005.12.036 PubMedCrossRefGoogle Scholar
  20. 20.
    Ikeda T (2008) Stem cells and neonatal brain injury. Cell Tissue Res 331:263–269. doi: 10.1007/s00441-007-0546-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Levine S (1960) Anoxic–ischemic encephalopathy in rats. Am J Pathol 36:1–17PubMedGoogle Scholar
  22. 22.
    Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 9:131–141. doi: 10.1002/ana.410090206 PubMedCrossRefGoogle Scholar
  23. 23.
    Lalonde R, Joyal CC, Botez MI (1993) Effects of folic acid and folinic acid on cognitive and motor behavior sin 20-month-old rats. Pharmacol Biochem Behav 44:703–707. doi: 10.1016/0091-3057(93)90188-Y PubMedCrossRefGoogle Scholar
  24. 24.
    Matté C, Mackedanz V, Stefanello FM, Scherer EBS, Andreazza AC (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54:7–13. doi: 10.1016/j.neuint.2008.08.011 PubMedCrossRefGoogle Scholar
  25. 25.
    Netto CA, Dias RD, Izquierdo I (1986) Differential effect of posttraining naloxone, beta-endorphin, leu-enkephalin and electroconvulsive shock administration upon memory of an open-field habituation and of a water-finding task. Psychoneuroendocrinology 11:437–446. doi: 10.1016/0306-4530(86)90005-3 PubMedCrossRefGoogle Scholar
  26. 26.
    Izquierdo I, Schroder N, Netto CA, Medina JH (1999) Novelty causes time-dependent retrograde amnesia for one-trial avoidance task in rats through NMDA receptor and camkii-dependent mechanisms in the hippocampus. Eur J Neurosci 11:3323–3328. doi: 10.1046/j.1460-9568.1999.00742.x PubMedCrossRefGoogle Scholar
  27. 27.
    Wyse ATS, Brusque AM, Silva CG, Streck EL, Wajner M, Wannmacher CMD (1998) Inhibition of Na+, K+-ATPase from rat brain cortex by propionic acid. NeuroReport 9:1719–1721PubMedCrossRefGoogle Scholar
  28. 28.
    Chan KM, Delfer D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated atpase activity. Anal Biochem 157:375–380PubMedCrossRefGoogle Scholar
  29. 29.
    Ferguson SA, Berry KJ, Hansen DK, Wall KS, White G, Antony AC (2005) Behavioral effects of prenatal folate deficiency in mice. Birth Defects Res A Clin Mol Teratol 73(4):249–252. doi: 10.1002/bdra.20111 PubMedCrossRefGoogle Scholar
  30. 30.
    Sánchez-Villegas SA, Doreste J, Schlatter J, Pla J, Rastrollo BM, Martínez-Gonzalez MAM (2009) Association between folate, vitamin B6 and vitamin B12 intake and depression in the SUN cohort study. J Hum Nutr Diet 22:122–133. doi: 10.1111/j.1365-277X.2008.00931.x PubMedCrossRefGoogle Scholar
  31. 31.
    Ramos MI, Allen LH, Haan MN, Green R, Miller JW (2004) Plasma folate concentrations are associated with depressive symptoms in elderly. Latina women despite folic acid fortification. Am J Clin Nutr 80(4):1024–1028PubMedGoogle Scholar
  32. 32.
    Masur J, Schutz MT, Boerngen R (1980) Gender differences in open-field behavior as a function of age. Dev Psychobiol 13(2):107–110PubMedCrossRefGoogle Scholar
  33. 33.
    Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68(3):285–316. doi: 10.1006/nlme.1997.3799 PubMedCrossRefGoogle Scholar
  34. 34.
    Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM (2000) BDNF protects against memory deficits following neonatal hypoxia–ischemia. Exp Neurol 166:99–114. doi: 10.1006/exnr.2000.7492 PubMedCrossRefGoogle Scholar
  35. 35.
    Young RSK, Kolonich J, Woods CL, Yagel SK (1986) Behavioral performance of rats following neonatal hypoxia–ischemia. Stroke 17(6):1313–1316. doi: 10.1161/01.STR.17.6.1313 PubMedCrossRefGoogle Scholar
  36. 36.
    Weis SN, Schunck RV, Pettenuzzo LF, Krolow R, Matté C, Manfredini V, do Carmo R, Peralba M, Vargas CR, Dalmaz C, Wyse AT, Netto CA (2011) Early biochemical effects after unilateral hypoxia–ischemia in the immature rat brain. Int J Dev Neurosci 29:115–120. doi: 10.1016/j.ijdevneu.2010.12.005 PubMedCrossRefGoogle Scholar
  37. 37.
    Singh R, Kanwar SS, Sood PK, Nehru B (2011) Beneficial effects of folic acid on enhancement of memory and antioxidant status in aged rat brain. Cell Mol Neurobiol 31(1):83–91. doi: 10.1007/s10571-010-9557-1 PubMedCrossRefGoogle Scholar
  38. 38.
    Van GB, Hultdin J, Johansson I, Stegmayr B, Hallmans G, Nilsson TK, Weinehall L, Witthoft C, Palmqvist R, Winkvist A (2005) Folate, vitamin B12, and risk of ischemic and hemorrhagic stroke: a prospective, nested case-referent study of plasma concentrations and dietary intake. Stroke 36(7):1426–1431. doi: 10.1161/01.STR.0000169934.96354.3a CrossRefGoogle Scholar
  39. 39.
    Kremer DR, Grosso C (2005) Maternal mutation 677C > T in the methylenetetrahydrofolate reductase gene associated with severe brain injury in offspring. Clin Genet 67(1):69–80. doi: 10.1111/j.1399-0004.2004.00373.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jaqueline Vieira Carletti
    • 1
    • 3
  • Bruna Ferrary Deniz
    • 1
  • Patrícia Maidana Miguel
    • 2
  • Joseane Jiménez Rojas
    • 1
    • 3
  • Janaína Kolling
    • 2
  • Emilene Barros Scherer
    • 2
  • Angela Teresinha de Souza Wyse
    • 2
  • Carlos Alexandre Netto
    • 2
    • 3
  • Lenir Orlandi Pereira
    • 1
    • 3
  1. 1.Departamento de Ciência MorfológicasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de BioquímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Programa de Pós Graduação em Ciências Biológicas-NeurociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations