Advertisement

Neurochemical Research

, Volume 37, Issue 6, pp 1335–1343 | Cite as

Therapeutic Effects of Stem Cells and Substrate Reduction in Juvenile Sandhoff Mice

  • J. R. Arthur
  • J. P. Lee
  • E. Y. Snyder
  • T. N. Seyfried
Original Paper

Abstract

Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the β-subunit gene of β-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial transplantation of Neural Stem Cells (NSCs) can provide enzymatic cross correction, to help reduce ganglioside storage and extend life. Here we tested the effect of NSCs and NB-DGJ, alone and together, on brain β-hexosaminidase activity, GM2, and GA2 content in juvenile SD mice. The SD mice received either cerebral NSC transplantation at post-natal day 0 (p-0), intraperitoneal injection of NB-DGJ (500 mg/kg/day) from p-9 to p-15, or received dual treatments. The brains were analyzed at p-15. β-galactosidase staining confirmed engraftment of lacZ-expressing NSCs in the cerebral cortex. Compared to untreated and sham-treated SD controls, NSC treatment alone provided a slight increase in Hex activity and significantly decreased GA2 content. However, NSCs had no effect on GM2 content when analyzed at p-15. NB-DGJ alone had no effect on Hex activity, but significantly reduced GM2 and GA2 content. Hex activity was slightly elevated in the NSC + drug-treated mice. GM2 and GA2 content in the dual treated mice were similar to that of the NB-DGJ treated mice. These data indicate that NB-DGJ alone was more effective in targeting storage in juvenile SD mice than were NSCs alone. No additive or synergistic effect between NSC and drug was found in these juvenile SD mice.

Keywords

Sandhoff disease Stem cell Substrate reduction therapy Gangliosides 

References

  1. 1.
    Jeyakumar M, Butters TD, Dwek RA et al (2002) Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 28:343–357PubMedCrossRefGoogle Scholar
  2. 2.
    Jeyakumar M, Thomas R, Elliot-Smith E et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126:974–987PubMedCrossRefGoogle Scholar
  3. 3.
    Kyrkanides S, Miller AW, Miller JN et al (2008) Peripheral blood mononuclear cell infiltration and neuroinflammation in the HexB−/− mouse model of neurodegeneration. J Neuroimmunol 203:50–57PubMedCrossRefGoogle Scholar
  4. 4.
    Baek RC, Kasperzyk JL, Platt FM et al (2008) N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice. Neurochem Int 52:1125–1133PubMedCrossRefGoogle Scholar
  5. 5.
    Sango K, Yamanaka S, Hoffmann A et al (1995) Mouse models of tay-sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet 11:170–176PubMedCrossRefGoogle Scholar
  6. 6.
    Phaneuf D, Wakamatsu N, Huang JQ et al (1996) Dramatically different phenotypes in mouse models of human tay-sachs and Sandhoff diseases. Hum Mol Genet 5:1–14PubMedCrossRefGoogle Scholar
  7. 7.
    Platt FM, Neises GR, Reinkensmeier G et al (1997) Prevention of lysosomal storage in tay-sachs mice treated with N-butyldeoxynojirimycin. Science 276:428–431PubMedCrossRefGoogle Scholar
  8. 8.
    Jeyakumar M, Butters TD, Cortina-Borja M et al (1999) Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. Proc Natl Acad Sci USA 96:6388–6393PubMedCrossRefGoogle Scholar
  9. 9.
    Ranes MK, El-Abbadi M, Manfredi MG et al (2001) N-butyldeoxynojirimycin reduces growth and ganglioside content of experimental mouse brain tumours. Br J Cancer 84:1107–1114PubMedCrossRefGoogle Scholar
  10. 10.
    Platt FM, Jeyakumar M, Andersson U et al (2003) Substrate reduction therapy in mouse models of the glycosphingolipidoses. Philos Trans R Soc Lond B Biol Sci 358:947–954PubMedCrossRefGoogle Scholar
  11. 11.
    Andersson U, Smith D, Jeyakumar M et al (2004) Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis 16:506–515PubMedCrossRefGoogle Scholar
  12. 12.
    Kasperzyk JL, El-Abbadi MM, Hauser EC et al (2004) N-butyldeoxygalactonojirimycin reduces neonatal brain ganglioside content in a mouse model of GM1 gangliosidosis. J Neurochem 89:645–653PubMedCrossRefGoogle Scholar
  13. 13.
    Kasperzyk JL, d’Azzo A, Platt FM et al (2005) Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 46:744–751PubMedCrossRefGoogle Scholar
  14. 14.
    Platt FM, Jeyakumar M, Andersson U et al (2005) New developments in treating glycosphingolipid storage diseases. Adv Exp Med Biol 564:117–126PubMedCrossRefGoogle Scholar
  15. 15.
    Denny CA, Kasperzyk JL, Gorham KN et al (2006) Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. J Neurosci Res 83:1028–1038PubMedCrossRefGoogle Scholar
  16. 16.
    Elliot-Smith E, Speak AO, Lloyd-Evans E et al (2008) Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol Genet Metab 94:204–211PubMedCrossRefGoogle Scholar
  17. 17.
    Platt FM, Jeyakumar M (2008) Substrate reduction therapy. Acta Paediatr Suppl 97:88–93PubMedCrossRefGoogle Scholar
  18. 18.
    Wortmann SB, Lefeber DJ, Dekomien G et al (2009) Substrate deprivation therapy in juvenile Sandhoff disease. J Inherit Metab, DisGoogle Scholar
  19. 19.
    Denny CA, Heinecke KA, Kim YP et al (2010) Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem 113:1525–1535PubMedGoogle Scholar
  20. 20.
    Andersson U, Butters TD, Dwek RA et al (2000) N-butyldeoxygalactonojirimycin: a more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo. Biochem Pharmacol 59:821–829PubMedCrossRefGoogle Scholar
  21. 21.
    Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8:198–202PubMedCrossRefGoogle Scholar
  22. 22.
    Platt FM, Jeyakumar M, Andersson U et al (2001) Inhibition of substrate synthesis as a strategy for glycolipid lysosomal storage disease therapy. J Inherit Metab Dis 24:275–290PubMedCrossRefGoogle Scholar
  23. 23.
    Cox TM, Aerts JM, Andria G et al (2003) The role of the iminosugar N-butyldeoxynojirimycin (miglustat) in the management of type I (non-neuronopathic) gaucher disease: a position statement. J Inherit Metab Dis 26:513–526PubMedCrossRefGoogle Scholar
  24. 24.
    Jeyakumar M, Smith DA, Williams IM et al (2004) NSAIDs increase survival in the Sandhoff disease mouse: synergy with N-butyldeoxynojirimycin. Ann Neurol 56:642–649PubMedCrossRefGoogle Scholar
  25. 25.
    Jeyakumar M, Norflus F, Tifft CJ et al (2001) Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation. Blood 97:327–329PubMedCrossRefGoogle Scholar
  26. 26.
    Lee JP, Jeyakumar M, Gonzalez R et al (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13:439–447PubMedCrossRefGoogle Scholar
  27. 27.
    Jeyakumar M, Lee JP, Sibson NR et al (2009) Neural stem cell transplantation benefits a monogenic neurometabolic disorder during the symptomatic phase of disease. Stem Cells 27:2362–2370PubMedCrossRefGoogle Scholar
  28. 28.
    Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667PubMedCrossRefGoogle Scholar
  29. 29.
    Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537PubMedCrossRefGoogle Scholar
  30. 30.
    Chiavegatto S, Sun J, Nelson RJ et al (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234PubMedCrossRefGoogle Scholar
  31. 31.
    Yamashita T, Wu YP, Sandhoff R et al (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102:2725–2730PubMedCrossRefGoogle Scholar
  32. 32.
    Yu RK, Yen SI (1975) Gangliosides in developing mouse brain myelin. J Neurochem 25:229–232PubMedCrossRefGoogle Scholar
  33. 33.
    Seyfried TN, Miyazawa N, Yu RK (1983) Cellular localization of gangliosides in the developing mouse cerebellum: analysis using the weaver mutant. J Neurochem 41:491–505PubMedCrossRefGoogle Scholar
  34. 34.
    Seyfried TN (1987) Ganglioside abnormalities associated with failed neural differentiation in a T-locus mutant mouse embryo. Dev Biol 123:286–291PubMedCrossRefGoogle Scholar
  35. 35.
    Yu RK, Macala LJ, Taki T et al (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829PubMedCrossRefGoogle Scholar
  36. 36.
    Arthur JR, Lee JP, Snyder EY et al (2010) Therapeutic effects of stem cells and substrate reduction in Sandhoff mice. In: American society for neurochemistry 41st annual meeting, p 27, Abstract PTW06-12Google Scholar
  37. 37.
    Galjaard H (1979) Early diagnosis and prevention of genetic disease. Ann Clin Biochem 16:343–353PubMedGoogle Scholar
  38. 38.
    Hauser EC, Kasperzyk JL, d’Azzo A et al (2004) Inheritance of lysosomal acid beta-galactosidase activity and gangliosides in crosses of DBA/2J and knockout mice. Biochem Genet 42:241–257PubMedCrossRefGoogle Scholar
  39. 39.
    Parker MA, Anderson JK, Corliss DA et al (2005) Expression profile of an operationally-defined neural stem cell clone. Exp Neurol 194:320–332PubMedCrossRefGoogle Scholar
  40. 40.
    Macala LJ, Yu RK, Ando S (1983) Analysis of brain lipids by high performance thin-layer chromatography and densitometry. J Lipid Res 24:1243–1250PubMedGoogle Scholar
  41. 41.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509PubMedGoogle Scholar
  42. 42.
    Seyfried TN, Ando S, Yu RK (1978) Isolation and characterization of human liver hematoside. J Lipid Res 19:538–543PubMedGoogle Scholar
  43. 43.
    Svennerholm L (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611PubMedCrossRefGoogle Scholar
  44. 44.
    Ando S, Chang NC, Yu RK (1978) High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal Biochem 89:437–450PubMedCrossRefGoogle Scholar
  45. 45.
    Snyder EY, Deitcher DL, Walsh C et al (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51PubMedCrossRefGoogle Scholar
  46. 46.
    Snyder EY, Taylor RM, Wolfe JH (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374:367–370PubMedCrossRefGoogle Scholar
  47. 47.
    Snyder EY, Park KI, Flax JD et al (1997) Potential of neural “stem-like” cells for gene therapy and repair of the degenerating central nervous system. Adv Neurol 72:121–132PubMedGoogle Scholar
  48. 48.
    Yandava BD, Billinghurst LL, Snyder EY (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA 96:7029–7034PubMedCrossRefGoogle Scholar
  49. 49.
    Aboody KS, Brown A, Rainov NG et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97:12846–12851PubMedCrossRefGoogle Scholar
  50. 50.
    Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7:75–84PubMedCrossRefGoogle Scholar
  51. 51.
    Guillaume DJ, Huhn SL, Selden NR et al (2008) Cellular therapy for childhood neurodegenerative disease. Part I: rationale and preclinical studies. Neurosurg Focus 24:E22PubMedCrossRefGoogle Scholar
  52. 52.
    Selden NR, Guillaume DJ, Steiner RD et al (2008) Cellular therapy for childhood neurodegenerative disease. Part II: clinical trial design and implementation. Neurosurg Focus 24:E23PubMedCrossRefGoogle Scholar
  53. 53.
    Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation? J Clin Invest 120:29–40PubMedCrossRefGoogle Scholar
  54. 54.
    Schwarz SC, Schwarz J (2010) Translation of stem cell therapy for neurological diseases. Transl Res 156:155–160PubMedCrossRefGoogle Scholar
  55. 55.
    Kohan R, Cismondi IA, Oller-Ramirez AM et al (2011) Therapeutic approaches to the challenge of neuronal ceroid lipofuscinoses. Curr Pharm Biotechnol 12:867–883PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • J. R. Arthur
    • 1
  • J. P. Lee
    • 2
  • E. Y. Snyder
    • 2
  • T. N. Seyfried
    • 1
  1. 1.Boston College Biology DepartmentChestnut HillUSA
  2. 2.Stem Cell & Regeneration ProgramSanford-Burnham Medical Research InstituteLA JollaUSA

Personalised recommendations