Neurochemical Research

, Volume 37, Issue 6, pp 1192–1200 | Cite as

Drug Resistance in Glioblastoma: A Mini Review

  • Catherine P. Haar
  • Preetha Hebbar
  • Gerald C. WallaceIV
  • Arabinda Das
  • William A. VandergriftIII
  • Joshua A. Smith
  • Pierre Giglio
  • Sunil J. Patel
  • Swapan K. Ray
  • Naren L. Banik


Glioblastoma multiforme (GBM) is recognized as the most common and lethal form of central nervous system cancer. Currently used surgical techniques, chemotherapeutic agents, and radiotherapy strategies have done very little in extending the life expectancies of patients diagnosed with GBM. The difficulty in treating this malignant disease lies both in its inherent complexity and numerous mechanisms of drug resistance. In this review, we summarize several of the primary mechanisms of drug resistance. We reviewed available published literature in the English language regarding drug resistance in glioblastoma. The reasons for drug resistance in glioblastoma include drug efflux, hypoxic areas of tumor cells, cancer stem cells, DNA damage repair, and miRNAs. Many potential therapies target these mechanisms, including a series of investigated alternative and plant-derived agents. Future research and clinical trials in glioblastoma patients should pursue combination of therapies to help combat drug resistance. The emerging new data on the potential of plant-derived therapeutics should also be closely considered and further investigated.


Glioblastoma multiforme Multidrug resistance Glioblastoma stem cells p-Glycoprotein Hypoxia-inducible factors miRNAs Alternative therapies 



Completion of this project was made possible by funding from the National Institutes of Health (NIH) grants (NS-31622, NS-38146, NS-57811, and NS-41088), the State of South Carolina Spinal Cord Injury Research Fund (SCIRF), and Jerry Zucker Fund for Brain Tumor Research at the MUSC Foundation.


  1. 1.
    Nicholas MK, Lukas RV, Chmura S, Yamini B, Lesniak M, Pytel P (2011) Molecular heterogeneity in glioblastoma: therapeutic opportunities and challenges. Semin Oncol 38(2):243–253PubMedCrossRefGoogle Scholar
  2. 2.
    Weller M (2011) Novel diagnostic and therapeutic approaches to malignant glioma. Swiss Med Wkly 141:w13210PubMedGoogle Scholar
  3. 3.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRefGoogle Scholar
  4. 4.
    Goldie JH (2001) Drug resistance in cancer: a perspective. Cancer Metastasis Rev 20(1–2):63–68PubMedCrossRefGoogle Scholar
  5. 5.
    Molnar J, Engi H, Hohmann J, Molnar P, Deli J, Wesolowska O, Michalak K, Wang Q (2010) Reversal of multidrug resistance by natural substances from plants. Curr Top Med Chem 10(17):1757–1768PubMedCrossRefGoogle Scholar
  6. 6.
    Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94(1):15–21PubMedCrossRefGoogle Scholar
  7. 7.
    de Vries NA, Buckle T, Zhao J, Beijnen JH, Schellens JH, van Tellingen O (2010) Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP. Invest New Drugs (Epub ahead of print). PMID: 20963470Google Scholar
  8. 8.
    Zhao P, Zhang YZ, Sun MZ (2005) Regulatory effect of small interfering RNA targeting multidrug resistant protein 1 on chemosensitivity of human multiforme glioblastoma cell line BT325. Ai Zheng 24(12):1436–1441PubMedGoogle Scholar
  9. 9.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627PubMedCrossRefGoogle Scholar
  10. 10.
    Hubensack M, Muller C, Hocherl P, Fellner S, Spruss T, Bernhardt G, Buschauer A (2008) Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. J Cancer Res Clin Oncol 134(5):597–607PubMedCrossRefGoogle Scholar
  11. 11.
    Wartenberg M, Richter M, Datchev A, Gunther S, Milosevic N, Bekhite MM, Figulla HR, Aran JM, Petriz J, Sauer H (2010) Glycolytic pyruvate regulates P-Glycoprotein expression in multicellular tumor spheroids via modulation of the intracellular redox state. J Cell Biochem 109(2):434–446PubMedGoogle Scholar
  12. 12.
    Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2):613–621PubMedGoogle Scholar
  13. 13.
    Rittierodt M, Tschernig T, Harada K (2004) Modulation of multidrug-resistance-associated P-glycoprotein in human U-87 MG and HUV-ECC cells with antisense oligodeoxynucleotides to MDR1 mRNA. Pathobiology 71(3):123–128PubMedCrossRefGoogle Scholar
  14. 14.
    Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28(2 Suppl 8):29–35PubMedCrossRefGoogle Scholar
  15. 15.
    Oliver L, Olivier C, Marhuenda FB, Campone M, Vallette FM (2009) Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy. Curr Mol Pharmacol 2(3):263–284PubMedCrossRefGoogle Scholar
  16. 16.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307PubMedCrossRefGoogle Scholar
  17. 17.
    Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394PubMedGoogle Scholar
  18. 18.
    Brown JM (2002) Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther 1(5):453–458PubMedGoogle Scholar
  19. 19.
    Del Rowe J, Scott C, Werner-Wasik M, Bahary JP, Curran WJ, Urtasun RC, Fisher B (2000) Single-arm, open-label phase II study of intravenously administered tirapazamine and radiation therapy for glioblastoma multiforme. J Clin Oncol 18(6):1254–1259PubMedGoogle Scholar
  20. 20.
    Blagosklonny MV (2005) How Avastin potentiates chemotherapeutic drugs: action and reaction in antiangiogenic therapy. Cancer Biol Ther 4(12):1307–1310PubMedCrossRefGoogle Scholar
  21. 21.
    Dai S, Huang ML, Hsu CY, Chao KS (2003) Inhibition of hypoxia inducible factor 1alpha causes oxygen-independent cytotoxicity and induces p53 independent apoptosis in glioblastoma cells. Int J Radiat Oncol Biol Phys 55(4):1027–1036PubMedCrossRefGoogle Scholar
  22. 22.
    Lin MI, Sessa WC (2004) Antiangiogenic therapy: creating a unique “window” of opportunity. Cancer Cell 6(6):529–531PubMedGoogle Scholar
  23. 23.
    Semenza GL, Artemov D, Bedi A, Bhujwalla Z, Chiles K, Feldser D, Laughner E, Ravi R, Simons J, Taghavi P, Zhong H (2001) The metabolism of tumours: 70 years later. Novartis Found Symp 240:251–260 discussion 260–254PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang J, Stevens MF, Laughton CA, Madhusudan S, Bradshaw TD (2010) Acquired resistance to temozolomide in glioma cell lines: molecular mechanisms and potential translational applications. Oncology 78(2):103–114PubMedCrossRefGoogle Scholar
  25. 25.
    Suri V, Jha P, Sharma MC, Sarkar C (2011) O6-methylguanine DNA methyltransferase gene promoter methylation in high-grade gliomas: a review of current status. Neurol India 59(2):229–235PubMedCrossRefGoogle Scholar
  26. 26.
    Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, Batchelor TT, Futreal PA, Stratton MR, Curry WT, Iafrate AJ, Louis DN (2007) Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13(7):2038–2045PubMedCrossRefGoogle Scholar
  27. 27.
    Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199PubMedCrossRefGoogle Scholar
  28. 28.
    Perry JR, Belanger K, Mason WP, Fulton D, Kavan P, Easaw J, Shields C, Kirby S, Macdonald DR, Eisenstat DD, Thiessen B, Forsyth P, Pouliot JF (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: rescue study. J Clin Oncol 28(12):2051–2057CrossRefGoogle Scholar
  29. 29.
    Gallo C, Buonerba C, Di Lorenzo G, Romeo V, De Placido S, Marinelli A (2010) Can high-dose fotemustine reverse MGMT resistance in glioblastoma multiforme? J Neurooncol 100(2):311–319PubMedCrossRefGoogle Scholar
  30. 30.
    Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264PubMedCrossRefGoogle Scholar
  31. 31.
    Li Y, Li W, Yang Y, Lu Y, He C, Hu G, Liu H, Chen J, He J, Yu H (2009) MicroRNA-21 targets LRRFIP1 and contributes to VM-26 resistance in glioblastoma multiforme. Brain Res 1286:13–18PubMedCrossRefGoogle Scholar
  32. 32.
    Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3(1):17–26PubMedCrossRefGoogle Scholar
  33. 33.
    Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S (2010) Cancer stem cells in glioblastoma–molecular signaling and therapeutic targeting. Protein Cell 1(7):638–655PubMedCrossRefGoogle Scholar
  34. 34.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401PubMedCrossRefGoogle Scholar
  35. 35.
    Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM, Kerbel RS (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69(18):7243–7251PubMedCrossRefGoogle Scholar
  36. 36.
    Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848PubMedCrossRefGoogle Scholar
  37. 37.
    Carrassa L, Damia G (2011) Unleashing Chk1 in cancer therapy. Cell Cycle 10(13):2121–2128PubMedCrossRefGoogle Scholar
  38. 38.
    Cheng L, Wu Q, Huang Z, Guryanova OA, Huang Q, Shou W, Rich JN, Bao S (2011) L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30(5):800–813PubMedCrossRefGoogle Scholar
  39. 39.
    Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101(39):14228–14233PubMedCrossRefGoogle Scholar
  40. 40.
    Sul J, Fine HA (2010) Malignant gliomas: new translational therapies. Mt Sinai J Med 77(6):655–666PubMedCrossRefGoogle Scholar
  41. 41.
    Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA (2008) Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 29(5):918–925PubMedCrossRefGoogle Scholar
  42. 42.
    George J, Banik NL, Ray SK (2009) Bcl-2 siRNA augments taxol mediated apoptotic death in human glioblastoma U138MG and U251MG cells. Neurochem Res 34(1):66–78PubMedCrossRefGoogle Scholar
  43. 43.
    George J, Banik NL, Ray SK (2009) Combination of taxol and Bcl-2 siRNA induces apoptosis in human glioblastoma cells and inhibits invasion, angiogenesis and tumour growth. J Cell Mol Med 13(10):4205–4218PubMedCrossRefGoogle Scholar
  44. 44.
    Bansal T, Jaggi M, Khar RK, Talegaonkar S (2009) Emerging significance of flavonoids as P-glycoprotein inhibitors in cancer chemotherapy. J Pharm Pharm Sci 12(1):46–78PubMedGoogle Scholar
  45. 45.
    Morris ME, Zhang S (2006) Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci 78(18):2116–2130PubMedCrossRefGoogle Scholar
  46. 46.
    Das A, Banik NL, Ray SK (2010) Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 116(1):164–176PubMedGoogle Scholar
  47. 47.
    Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci 76(13):1465–1472PubMedCrossRefGoogle Scholar
  48. 48.
    Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI (2006) Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol 72(6):681–692PubMedCrossRefGoogle Scholar
  49. 49.
    Ravindranath MH, Muthugounder S, Presser N, Viswanathan S (2004) Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol 546:121–165PubMedGoogle Scholar
  50. 50.
    George J, Banik NL, Ray SK (2010) Genistein induces receptor and mitochondrial pathways and increases apoptosis during Bcl-2 knockdown in human malignant neuroblastoma SK-N-DZ cells. J Neurosci Res 88(4):877–886PubMedGoogle Scholar
  51. 51.
    Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67(20):9809–9816PubMedCrossRefGoogle Scholar
  52. 52.
    Chen TC, Wang W, Golden EB, Thomas S, Sivakumar W, Hofman FM, Louie SG, Schonthal AH (2011) Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett 302(2):100–108PubMedCrossRefGoogle Scholar
  53. 53.
    Demeule M, Brossard M, Page M, Gingras D, Beliveau R (2000) Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta 1478(1):51–60PubMedCrossRefGoogle Scholar
  54. 54.
    Lamy S, Lafleur R, Bedard V, Moghrabi A, Barrette S, Gingras D, Beliveau R (2007) Anthocyanidins inhibit migration of glioblastoma cells: structure-activity relationship and involvement of the plasminolytic system. J Cell Biochem 100(1):100–111PubMedCrossRefGoogle Scholar
  55. 55.
    Das A, Banik NL, Ray SK (2008) N-(4-Hydroxyphenyl) retinamide induced both differentiation and apoptosis in human glioblastoma T98G and U87MG cells. Brain Res 1227:207–215PubMedCrossRefGoogle Scholar
  56. 56.
    Ulukaya E, Pirianov G, Kurt MA, Wood EJ, Mehmet H (2003) Fenretinide induces cytochrome c release, caspase 9 activation and apoptosis in the absence of mitochondrial membrane depolarisation. Cell Death Differ 10(7):856–859PubMedCrossRefGoogle Scholar
  57. 57.
    Lippman SM, Lotan R (2000) Advances in the development of retinoids as chemopreventive agents. J Nutr 130(2S Suppl):479S–482SPubMedGoogle Scholar
  58. 58.
    Mellai M, Caldera V, Patrucco A, Annovazzi L, Schiffer D (2008) Survivin expression in glioblastomas correlates with proliferation, but not with apoptosis. Anticancer Res 28(1A):109–118PubMedGoogle Scholar
  59. 59.
    George J, Banik NL, Ray SK (2010) Survivin knockdown and concurrent 4-HPR treatment controlled human glioblastoma in vitro and in vivo. Neuro Oncol 12(11):1088–1101PubMedCrossRefGoogle Scholar
  60. 60.
    Das A, Banik NL, Ray SK (2009) Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells. Neurochem Res 34(1):87–101PubMedCrossRefGoogle Scholar
  61. 61.
    Das A, Banik NL, Ray SK (2009) Retinoids induce differentiation and downregulate telomerase activity and N-Myc to increase sensitivity to flavonoids for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Int J Oncol 34(3):757–765PubMedGoogle Scholar
  62. 62.
    Mukherjee P, Abate LE, Seyfried TN (2004) Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 10(16):5622–5629CrossRefGoogle Scholar
  63. 63.
    Marsh J, Mukherjee P, Seyfried TN (2008) Akt-dependent proapoptotic effects of dietary restriction on late-stage management of a phosphatase and tensin homologue/tuberous sclerosis complex 2-deficient mouse astrocytoma. Clin Cancer Res 14(23):7751–7762PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN (2007) The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 4:5CrossRefGoogle Scholar
  65. 65.
    Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, Seyfried TN (2010) Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab (Lond) 7:33CrossRefGoogle Scholar
  66. 66.
    Das A, Banik NL, Ray SK (2007) Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98G and U87MG cells. Cancer 110(5):1083–1095PubMedCrossRefGoogle Scholar
  67. 67.
    Seyfried TN, Shelton LM, Mukherjee P (2010) Does the existing standard of care increase glioblastoma energy metabolism? Lancet Oncol 11(9):811–813PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Catherine P. Haar
    • 1
  • Preetha Hebbar
    • 1
  • Gerald C. WallaceIV
    • 1
  • Arabinda Das
    • 1
  • William A. VandergriftIII
    • 1
  • Joshua A. Smith
    • 1
  • Pierre Giglio
    • 1
  • Sunil J. Patel
    • 1
  • Swapan K. Ray
    • 2
  • Naren L. Banik
    • 1
  1. 1.Divisions of Neurology and Neurosurgery, Department of NeurosciencesMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Pathology, Microbiology, and ImmunologyUniversity of South Carolina School of MedicineColumbiaUSA

Personalised recommendations