Neurochemical Research

, Volume 37, Issue 6, pp 1208–1229 | Cite as

It’s a Lipid’s World: Bioactive Lipid Metabolism and Signaling in Neural Stem Cell Differentiation

Overview

Abstract

Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called “bioactive lipids”. Pioneering work in Dr. Robert Ledeen’s laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: (1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and (2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed.

Keywords

Sphingolipids Eicosanoids Lysophospholipids Steroids Embryonic stem cells Neural progenitor cells Differentiation 

Abbreviations

aPKC

Atypical protein kinase C

DAG

Diacylglycerol

EGF

Epidermal growth factor

FGF

Fibroblast growth factor

GSL

Glycosphingolipid

IGF

Insulin-like growth factor

IP3

Inositoltrisphosphate

LPA

Lysophosphatidic acid

LPL

Lysophospholipid

NSC

Neural stem cell

OPC

Oligodendrocyte precursor cell

PAR-4

Prostate apoptosis response 4

PIP

Phosphatidylinositolphosphate

PLC

Phospholipase C

RA

Retinoic acid

S18

N-oleoyl serinol

S1P

Sphingosine-1-phosphate

SVZ

Subventricular zone

Notes

Acknowledgments

This work was supported by the NIH grant R01AG034389 to EB. Institutional support by the Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA (Director Dr. Lin Mei) is also acknowledged.

References

  1. 1.
    Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94:253–262PubMedCrossRefGoogle Scholar
  2. 2.
    Deschamps J, de Laaf R, Verrijzer P, de Gouw M, Destree O, Meijlink F (1987) The mouse Hox2.3 homeobox-containing gene: regulation in differentiating pluripotent stem cells and expression pattern in embryos. Differentiation 35:21–30PubMedCrossRefGoogle Scholar
  3. 3.
    Chen L, Khillan JS (2010) A novel signaling by vitamin A/retinol promotes self renewal of mouse embryonic stem cells by activating PI3K/Akt signaling pathway via insulin-like growth factor-1 receptor. Stem Cells 28:57–63PubMedCrossRefGoogle Scholar
  4. 4.
    Chen L, Yang M, Dawes J, Khillan JS (2007) Suppression of ES cell differentiation by retinol (vitamin A) via the overexpression of Nanog. Differentiation 75:682–693PubMedCrossRefGoogle Scholar
  5. 5.
    Sun G, Shi Y (2010) Nuclear receptors in stem cells and their therapeutic potential. Adv Drug Deliv Rev 62:1299–1306PubMedCrossRefGoogle Scholar
  6. 6.
    Lee MH, Cho YS, Han YM (2007) Simvastatin suppresses self-renewal of mouse embryonic stem cells by inhibiting RhoA geranylgeranylation. Stem Cells 25:1654–1663PubMedCrossRefGoogle Scholar
  7. 7.
    Pagkalos J, Cha JM, Kang Y, Heliotis M, Tsiridis E, Mantalaris A (2010) Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 25:2470–2478PubMedCrossRefGoogle Scholar
  8. 8.
    Kishi Y, Takahashi J, Koyanagi M, Morizane A, Okamoto Y, Horiguchi S, Tashiro K, Honjo T, Fujii S, Hashimoto N (2005) Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells. J Neurosci Res 79:279–286PubMedCrossRefGoogle Scholar
  9. 9.
    Barha CK, Ishrat T, Epp JR, Galea LA, Stein DG (2011) Progesterone treatment normalizes the levels of cell proliferation and cell death in the dentate gyrus of the hippocampus after traumatic brain injury. Exp Neurol 231:72–81PubMedCrossRefGoogle Scholar
  10. 10.
    Labombarda F, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF (2011) Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol 231:135–146PubMedCrossRefGoogle Scholar
  11. 11.
    Lewis PM, Dunn MP, McMahon JA, Logan M, Martin JF, St-Jacques B, McMahon AP (2001) Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell 105:599–612PubMedCrossRefGoogle Scholar
  12. 12.
    Lajoie P, Nabi IR (2010) Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol 282:135–163PubMedCrossRefGoogle Scholar
  13. 13.
    Lee MY, Ryu JM, Lee SH, Park JH, Han HJ (2010) Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res 51:2082–2089PubMedCrossRefGoogle Scholar
  14. 14.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50PubMedCrossRefGoogle Scholar
  15. 15.
    Li Y, Zhang H, Litingtung Y, Chiang C (2006) Cholesterol modification restricts the spread of Shh gradient in the limb bud. Proc Natl Acad Sci USA 103:6548–6553PubMedCrossRefGoogle Scholar
  16. 16.
    Osakada F, Takahashi M (2011) Neural induction and patterning in mammalian pluripotent stem cells. CNS Neurol Disord Drug TargetsGoogle Scholar
  17. 17.
    Hu BY, Du ZW, Zhang SC (2009) Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 4:1614–1622PubMedCrossRefGoogle Scholar
  18. 18.
    Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768:923–940PubMedCrossRefGoogle Scholar
  19. 19.
    Gardell SE, Dubin AE, Chun J (2006) Emerging medicinal roles for lysophospholipid signaling. Trends Mol Med 12:65–75PubMedCrossRefGoogle Scholar
  20. 20.
    Hla T, Lee MJ, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids–receptor revelations. Science 294:1875–1878PubMedCrossRefGoogle Scholar
  21. 21.
    Hla T, Lee MJ, Ancellin N, Thangada S, Liu CH, Kluk M, Chae SS, Wu MT (2000) Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Ann N Y Acad Sci 905:16–24PubMedCrossRefGoogle Scholar
  22. 22.
    Lin ME, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91:130–138PubMedCrossRefGoogle Scholar
  23. 23.
    Okudaira S, Yukiura H, Aoki J (2010) Biological roles of lysophosphatidic acid signaling through its production by autotaxin. Biochimie 92:698–706PubMedCrossRefGoogle Scholar
  24. 24.
    Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966PubMedCrossRefGoogle Scholar
  25. 25.
    Tigyi G, Parrill AL (2003) Molecular mechanisms of lysophosphatidic acid action. Prog Lipid Res 42:498–526PubMedCrossRefGoogle Scholar
  26. 26.
    Ye X, Ishii I, Kingsbury MA, Chun J (2002) Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta 1585:108–113PubMedGoogle Scholar
  27. 27.
    Nakanaga K, Hama K, Aoki J (2010) Autotaxin—an LPA producing enzyme with diverse functions. J Biochem 148:13–24PubMedCrossRefGoogle Scholar
  28. 28.
    Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN (2011) Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 93:61–70PubMedCrossRefGoogle Scholar
  29. 29.
    Hurst JH, Mumaw J, Machacek DW, Sturkie C, Callihan P, Stice SL, Hooks SB (2008) Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology. BMC Neurosci 9:118PubMedCrossRefGoogle Scholar
  30. 30.
    Pebay A, Bonder CS, Pitson SM (2007) Stem cell regulation by lysophospholipids. Prostaglandins Other Lipid Mediat 84:83–97PubMedCrossRefGoogle Scholar
  31. 31.
    Pebay A, Wong RC, Pitson SM, Wolvetang EJ, Peh GS, Filipczyk A, Koh KL, Tellis I, Nguyen LT, Pera MF (2005) Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23:1541–1548PubMedCrossRefGoogle Scholar
  32. 32.
    Pitson SM, Pebay A (2009) Regulation of stem cell pluripotency and neural differentiation by lysophospholipids. Neurosignals 17:242–254PubMedCrossRefGoogle Scholar
  33. 33.
    Callihan P, Mumaw J, Machacek DW, Stice SL, Hooks SB (2011) Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol Ther 129:290–306PubMedCrossRefGoogle Scholar
  34. 34.
    Jenkins CM, Cedars A, Gross RW (2009) Eicosanoid signalling pathways in the heart. Cardiovasc Res 82:240–249PubMedCrossRefGoogle Scholar
  35. 35.
    Khanapure SP, Garvey DS, Janero DR, Letts LG (2007) Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr Top Med Chem 7:311–340PubMedCrossRefGoogle Scholar
  36. 36.
    Lambeau G, Gelb MH (2008) Biochemistry and physiology of mammalian secreted phospholipases A2. Annu Rev Biochem 77:495–520PubMedCrossRefGoogle Scholar
  37. 37.
    Szefel J, Piotrowska M, Kruszewski WJ, Jankun J, Lysiak-Szydlowska W, Skrzypczak-Jankun E (2011) Eicosanoids in prevention and management of diseases. Curr Mol Med 11:13–25PubMedCrossRefGoogle Scholar
  38. 38.
    Wymann MP, Schneiter R (2008) Lipid signalling in disease. Natl Rev Mol Cell Biol 9:162–176CrossRefGoogle Scholar
  39. 39.
    Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875PubMedCrossRefGoogle Scholar
  40. 40.
    Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136:1136–1147PubMedCrossRefGoogle Scholar
  41. 41.
    Logan CM, Giordano A, Puca A, Cassone M (2007) Prostaglandin E2: at the crossroads between stem cell development, inflammation and cancer. Cancer Biol Ther 6:1517–1520PubMedGoogle Scholar
  42. 42.
    North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI (2007) Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447:1007–1011PubMedCrossRefGoogle Scholar
  43. 43.
    Yun SP, Lee MY, Ryu JM, Han HJ (2009) Interaction between PGE2 and EGF receptor through MAPKs in mouse embryonic stem cell proliferation. Cell Mol Life Sci 66:1603–1616PubMedCrossRefGoogle Scholar
  44. 44.
    Kostenis E (2004) A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol Ther 102:243–257PubMedCrossRefGoogle Scholar
  45. 45.
    Layden BT, Newman M, Chen F, Fisher A, Lowe WL Jr (2010) G protein coupled receptors in embryonic stem cells: a role for Gs-alpha signaling. PLoS One 5:e9105PubMedCrossRefGoogle Scholar
  46. 46.
    Kilkenny DM, Rocheleau JV, Price J, Reich MB, Miller GG (2003) c-Src regulation of fibroblast growth factor-induced proliferation in murine embryonic fibroblasts. J Biol Chem 278:17448–17454PubMedCrossRefGoogle Scholar
  47. 47.
    Yanes O, Clark J, Wong DM, Patti GJ, Sanchez-Ruiz A, Benton HP, Trauger SA, Desponts C, Ding S, Siuzdak G (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6:411–417PubMedCrossRefGoogle Scholar
  48. 48.
    Chillar A, So SP, Ruan CH, Shelat H, Geng YJ, Ruan KH (2010) A profile of NSAID-targeted arachidonic acid metabolisms in human embryonic stem cells (hESCs): implication of the negative effects of NSAIDs on heart tissue regeneration. Int J CardiolGoogle Scholar
  49. 49.
    Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76:958–970PubMedGoogle Scholar
  50. 50.
    Finkensieper A, Kieser S, Bekhite MM, Richter M, Mueller JP, Graebner R, Figulla HR, Sauer H, Wartenberg M (2010) The 5-lipoxygenase pathway regulates vasculogenesis in differentiating mouse embryonic stem cells. Cardiovasc Res 86:37–44PubMedCrossRefGoogle Scholar
  51. 51.
    Kim MH, Lee YJ, Kim MO, Kim JS, Han HJ (2010) Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3beta/beta-catenin signaling pathways. J Cell Biochem 111:686–698PubMedCrossRefGoogle Scholar
  52. 52.
    Aguado T, Palazuelos J, Monory K, Stella N, Cravatt B, Lutz B, Marsicano G, Kokaia Z, Guzman M, Galve-Roperh I (2006) The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells. J Neurosci 26:1551–1561PubMedCrossRefGoogle Scholar
  53. 53.
    Ma D, Zhang M, Larsen CP, Xu F, Hua W, Yamashima T, Mao Y, Zhou L (2010) DHA promotes the neuronal differentiation of rat neural stem cells transfected with GPR40 gene. Brain Res 1330:1–8PubMedCrossRefGoogle Scholar
  54. 54.
    Oudin MJ, Gajendra S, Williams G, Hobbs C, Lalli G, Doherty P (2011) Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain. J Neurosci 31:4000–4011PubMedCrossRefGoogle Scholar
  55. 55.
    Galve-Roperh I, Aguado T, Rueda D, Velasco G, Guzman M (2006) Endocannabinoids: a new family of lipid mediators involved in the regulation of neural cell development. Curr Pharm Des 12:2319–2325PubMedCrossRefGoogle Scholar
  56. 56.
    Hayashi T, Su TP (2010) Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 51:381–398PubMedCrossRefGoogle Scholar
  57. 57.
    Hayashi T, Fujimoto M (2010) Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 77:517–528PubMedCrossRefGoogle Scholar
  58. 58.
    Ramachandran S, Chu UB, Mavlyutov TA, Pal A, Pyne S, Ruoho AE (2009) The sigma 1 receptor interacts with N-alkyl amines and endogenous sphingolipids. Eur J Pharmacol 609:19–26PubMedCrossRefGoogle Scholar
  59. 59.
    Takebayashi M, Hayashi T, Su TP (2004) Sigma-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution. Synapse 53:90–103PubMedCrossRefGoogle Scholar
  60. 60.
    Hayashi T, Su TP (2004) Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci USA 101:14949–14954PubMedCrossRefGoogle Scholar
  61. 61.
    Frebel K, Wiese S (2006) Signalling molecules essential for neuronal survival and differentiation. Biochem Soc Trans 34:1287–1290PubMedCrossRefGoogle Scholar
  62. 62.
    Paling NR, Wheadon H, Bone HK, Welham MJ (2004) Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem 279:48063–48070PubMedCrossRefGoogle Scholar
  63. 63.
    Storm MP, Bone HK, Beck CG, Bourillot PY, Schreiber V, Damiano T, Nelson A, Savatier P, Welham MJ (2007) Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem 282:6265–6273PubMedCrossRefGoogle Scholar
  64. 64.
    Umehara H, Kimura T, Ohtsuka S, Nakamura T, Kitajima K, Ikawa M, Okabe M, Niwa H, Nakano T (2007) Efficient derivation of embryonic stem cells by inhibition of glycogen synthase kinase-3. Stem Cells 25:2705–2711PubMedCrossRefGoogle Scholar
  65. 65.
    Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63PubMedCrossRefGoogle Scholar
  66. 66.
    Bhattacharya B, Miura T, Brandenberg R, Mejido J, Luo Y, Yang AX, Joshi BH, Irene G, Thies RS, Amit M, Lyons I, Condie BG, Iskovitz-Eldor J, Rao MS, Puri RK (2003) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103:2956–2964PubMedCrossRefGoogle Scholar
  67. 67.
    Kelly KF, Ng DY, Jayakumaran G, Wood GA, Koide H, Doble BW (2011) beta-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell 8:214–227PubMedCrossRefGoogle Scholar
  68. 68.
    Takao Y, Yokota T, Koide H (2007) Beta-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochem Biophys Res Commun 353:699–705PubMedCrossRefGoogle Scholar
  69. 69.
    Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–896PubMedCrossRefGoogle Scholar
  70. 70.
    Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048–2060PubMedCrossRefGoogle Scholar
  71. 71.
    Okita K, Yamanaka S (2006) Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Curr Stem Cell Res Ther 1:103–111PubMedCrossRefGoogle Scholar
  72. 72.
    Schuringa JJ, van der Schaaf S, Vellenga E, Eggen BJ, Kruijer W (2002) LIF-induced STAT3 signaling in murine versus human embryonal carcinoma (EC) cells. Exp Cell Res 274:119–129PubMedCrossRefGoogle Scholar
  73. 73.
    Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–3360PubMedCrossRefGoogle Scholar
  74. 74.
    Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, Song Z, Ding M, Deng H (2007) MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75:299–307PubMedCrossRefGoogle Scholar
  75. 75.
    Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189PubMedCrossRefGoogle Scholar
  76. 76.
    Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG, Wicha MS (2009) Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 7:e1000121PubMedCrossRefGoogle Scholar
  77. 77.
    Otaegi G, Yusta-Boyo MJ, Vergano-Vera E, Mendez-Gomez HR, Carrera AC, Abad JL, Gonzalez M, de la Rosa EJ, Vicario-Abejon C, de Pablo F (2006) Modulation of the PI 3-kinase-Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. J Cell Sci 119:2739–2748PubMedCrossRefGoogle Scholar
  78. 78.
    Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186PubMedCrossRefGoogle Scholar
  79. 79.
    Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A (2000) GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with Axin. Oncogene 19:537–545PubMedCrossRefGoogle Scholar
  80. 80.
    van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277:17901–17905PubMedCrossRefGoogle Scholar
  81. 81.
    Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of beta-catenin affects mouse development at gastrulation. Development 121:3529–3537PubMedGoogle Scholar
  82. 82.
    Chen Y, Li X, Eswarakumar VP, Seger R, Lonai P (2000) Fibroblast growth factor (FGF) signaling through PI 3-kinase and Akt/PKB is required for embryoid body differentiation. Oncogene 19:3750–3756PubMedCrossRefGoogle Scholar
  83. 83.
    Chen S, Do JT, Zhang Q, Yao S, Yan F, Peters EC, Scholer HR, Schultz PG, Ding S (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci USA 103:17266–17271PubMedCrossRefGoogle Scholar
  84. 84.
    Ding S, Schultz PG (2004) A role for chemistry in stem cell biology. Nat Biotechnol 22:833–840PubMedCrossRefGoogle Scholar
  85. 85.
    Ding S, Wu TY, Brinker A, Peters EC, Hur W, Gray NS, Schultz PG (2003) Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci USA 100:7632–7637PubMedCrossRefGoogle Scholar
  86. 86.
    Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG (2011) Chemical control of stem cell fate and developmental potential. Angew Chem Int Ed Engl 50:200–242PubMedCrossRefGoogle Scholar
  87. 87.
    Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCrossRefGoogle Scholar
  88. 88.
    Plo I, Bettaieb A, Payrastre B, Mansat-De Mas V, Bordier C, Rousse A, Kowalski-Chauvel A, Laurent G, Lautier D (1999) The phosphoinositide 3-kinase/Akt pathway is activated by daunorubicin in human acute myeloid leukemia cell lines. FEBS Lett 452:150–154PubMedCrossRefGoogle Scholar
  89. 89.
    Buehr M, Smith A (2003) Genesis of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 358:1397–1402; discussion 1402Google Scholar
  90. 90.
    Ding VM, Ling L, Natarajan S, Yap MG, Cool SM, Choo AB (2010) FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. J Cell Physiol 225:417–428PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang P, Andrianakos R, Yang Y, Liu C, Lu W (2010) Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem 285:9180–9189PubMedCrossRefGoogle Scholar
  92. 92.
    Bouhon IA, Kato H, Chandran S, Allen ND (2005) Neural differentiation of mouse embryonic stem cells in chemically defined medium. Brain Res Bull 68:62–75PubMedCrossRefGoogle Scholar
  93. 93.
    Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen GJ, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940PubMedCrossRefGoogle Scholar
  94. 94.
    Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96PubMedCrossRefGoogle Scholar
  95. 95.
    Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782PubMedCrossRefGoogle Scholar
  96. 96.
    Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23PubMedCrossRefGoogle Scholar
  97. 97.
    Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62:347–356PubMedCrossRefGoogle Scholar
  98. 98.
    Zhao L, Spassieva SD, Jucius TJ, Shultz LD, Shick HE, Macklin WB, Hannun YA, Obeid LM, Ackerman SL (2011) A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet 7:e1002063PubMedCrossRefGoogle Scholar
  99. 99.
    Park H, Haynes CA, Nairn AV, Kulik M, Dalton S, Moremen K, Merrill AH Jr (2010) Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res 51:480–489PubMedCrossRefGoogle Scholar
  100. 100.
    Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T, Erez-Roman R, Ben-David O, Levy M, Holzman D, Park H, Nyska A, Merrill AH Jr, Futerman AH (2010) A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285:10911–10923PubMedCrossRefGoogle Scholar
  101. 101.
    Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH Jr, Futerman AH (2010) A critical role for ceramide synthase 2 in liver homeostasis: I. Alterations in lipid metabolic pathways. J Biol Chem 285:10902–10910PubMedCrossRefGoogle Scholar
  102. 102.
    Imgrund S, Hartmann D, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Gieselmann V, Sandhoff K, Willecke K (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284:33549–33560PubMedCrossRefGoogle Scholar
  103. 103.
    Chalfant CE, Szulc Z, Roddy P, Bielawska A, Hannun YA (2004) The structural requirements for ceramide activation of serine-threonine protein phosphatases. J Lipid Res 45:496–506PubMedCrossRefGoogle Scholar
  104. 104.
    Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268:15523–15530PubMedGoogle Scholar
  105. 105.
    Mukhopadhyay A, Saddoughi SA, Song P, Sultan I, Ponnusamy S, Senkal CE, Snook CF, Arnold HK, Sears RC, Hannun YA, Ogretmen B (2008) Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling. Faseb JGoogle Scholar
  106. 106.
    Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273:30419–30426PubMedCrossRefGoogle Scholar
  107. 107.
    Yin X, Zafrullah M, Lee H, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2009) A ceramide-binding C1 domain mediates kinase suppressor of ras membrane translocation. Cell Physiol Biochem 24:219–230PubMedCrossRefGoogle Scholar
  108. 108.
    Bieberich E, Kawaguchi T, Yu RK (2000) N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275:177–181PubMedCrossRefGoogle Scholar
  109. 109.
    Krishnamurthy K, Wang G, Silva J, Condie BG, Bieberich E (2007) Ceramide regulates atypical PKC{zeta}/{lambda}-mediated Cell polarity in primitive ectoderm cells: a novel function of sphingolipids in morphogenesis. J Biol Chem 282:3379–3390PubMedCrossRefGoogle Scholar
  110. 110.
    Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E (2009) The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 284:14469–14475PubMedCrossRefGoogle Scholar
  111. 111.
    Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280:26415–26424PubMedCrossRefGoogle Scholar
  112. 112.
    Lozano J, Berra E, Municio MM, Diaz-Meco MT, Dominguez I, Sanz L, Moscat J (1994) Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem 269:19200–19202PubMedGoogle Scholar
  113. 113.
    Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14:1961–1969PubMedGoogle Scholar
  114. 114.
    Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275:35617–35623PubMedCrossRefGoogle Scholar
  115. 115.
    Fox TE, Houck KL, O’Neill SM, Nagarajan M, Stover TC, Pomianowski PT, Unal O, Yun JK, Naides SJ, Kester M (2007) Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. J Biol Chem 282:12450–12457PubMedCrossRefGoogle Scholar
  116. 116.
    Wang YM, Seibenhener ML, Vandenplas ML, Wooten MW (1999) Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF-kappaB/JNK kinase and cell survival. J Neurosci Res 55:293–302PubMedCrossRefGoogle Scholar
  117. 117.
    Leitges M, Sanz L, Martin P, Duran A, Braun U, Garcia JF, Camacho F, Diaz-Meco MT, Rennert PD, Moscat J (2001) Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol Cell 8:771–780PubMedCrossRefGoogle Scholar
  118. 118.
    Kovac J, Oster H, Leitges M (2007) Expression of the atypical protein kinase C (aPKC) isoforms iota/lambda and zeta during mouse embryogenesis. Gene Expr Patterns 7:187–196PubMedCrossRefGoogle Scholar
  119. 119.
    Cui S, Otten C, Rohr S, Abdelilah-Seyfried S, Link BA (2007) Analysis of aPKClambda and aPKCzeta reveals multiple and redundant functions during vertebrate retinogenesis. Mol Cell Neurosci 34:431–444PubMedCrossRefGoogle Scholar
  120. 120.
    Koike C, Nishida A, Akimoto K, Nakaya MA, Noda T, Ohno S, Furukawa T (2005) Function of atypical protein kinase C lambda in differentiating photoreceptors is required for proper lamination of mouse retina. J Neurosci 25:10290–10298PubMedCrossRefGoogle Scholar
  121. 121.
    Dutta D, Ray S, Home P, Larson M, Wolfe MW, Paul S (2011) Self renewal vs. Lineage Commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem CellsGoogle Scholar
  122. 122.
    Sengupta A, Duran A, Ishikawa E, Florian MC, Dunn SK, Ficker AM, Leitges M, Geiger H, Diaz-Meco M, Moscat J, Cancelas JA (2011) Atypical protein kinase C (aPKCzeta and aPKClambda) is dispensable for mammalian hematopoietic stem cell activity and blood formation. Proc Natl Acad Sci USA 108:9957–9962PubMedCrossRefGoogle Scholar
  123. 123.
    Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, Humphreys S, Rangnekar VM (1994) Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells. Cell Growth Differ 5:457–466PubMedGoogle Scholar
  124. 124.
    Diaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, Sanz L, Moscat J (1996) The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86:777–786PubMedCrossRefGoogle Scholar
  125. 125.
    Diaz-Meco MT, Lallena MJ, Monjas A, Frutos S, Moscat J (1999) Inactivation of the inhibitory kappaB protein kinase/nuclear factor kappaB pathway by Par-4 expression potentiates tumor necrosis factor alpha-induced apoptosis. J Biol Chem 274:19606–19612PubMedCrossRefGoogle Scholar
  126. 126.
    Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162:469–479PubMedCrossRefGoogle Scholar
  127. 127.
    Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276:44396–44404PubMedCrossRefGoogle Scholar
  128. 128.
    Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734PubMedCrossRefGoogle Scholar
  129. 129.
    Wang G, Silva J, Krishnamurthy K, Bieberich E (2006) A novel isoform of prostate apoptosis response 4 (PAR-4) that co-distributes with F-actin and prevents apoptosis in neural stem cells. Apoptosis 11:315–325PubMedCrossRefGoogle Scholar
  130. 130.
    Bieberich E (2011) Lipid vesicle-mediated affinity chromatography using magnetic activated cell sorting (LIMACS): a novel method to analyze protein-lipid interaction. J Vis ExpGoogle Scholar
  131. 131.
    van Blitterswijk WJ (1998) Hypothesis: ceramide conditionally activates atypical protein kinases C, Raf-1 and KSR through binding to their cysteine-rich domains. Biochem J 331(Pt 2):679–680PubMedGoogle Scholar
  132. 132.
    Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151PubMedCrossRefGoogle Scholar
  133. 133.
    Stahelin RV, Wang J, Blatner NR, Rafter JD, Murray D, Cho W (2005) The origin of C1A–C2 interdomain interactions in protein kinase Calpha. J Biol Chem 280:36452–36463PubMedCrossRefGoogle Scholar
  134. 134.
    Gallegos LL, Newton AC (2008) Spatiotemporal dynamics of lipid signaling: protein kinase C as a paradigm. IUBMB Life 60:782–789PubMedCrossRefGoogle Scholar
  135. 135.
    Bieberich E (2008) Ceramide signaling in cancer and stem cells. Future Lipidol 3:273–300PubMedCrossRefGoogle Scholar
  136. 136.
    Wang G, Krishnamurthy K, Chiang YW, Dasgupta S, Bieberich E (2008) Regulation of neural progenitor cell motility by ceramide and potential implications for mouse brain development. J Neurochem 106:718–733PubMedCrossRefGoogle Scholar
  137. 137.
    Bieberich E (2011) Ceramide in stem cell differentiation and embryo development: novel functions of a topological cell-signaling lipid and the concept of ceramide compartments. J Lipids 2011:610306PubMedGoogle Scholar
  138. 138.
    Etienne-Manneville S, Hall A (2003) Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421:753–756PubMedCrossRefGoogle Scholar
  139. 139.
    Hutterer A, Betschinger J, Petronczki M, Knoblich JA (2004) Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6:845–854PubMedCrossRefGoogle Scholar
  140. 140.
    Wang G, Krishnamurthy K, Bieberich E (2009) Regulation of primary cilia formation by ceramide. J Lipid Res 50:2103–2110PubMedCrossRefGoogle Scholar
  141. 141.
    Wu X, Li S, Chrostek-Grashoff A, Czuchra A, Meyer H, Yurchenco PD, Brakebusch C (2007) Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Dev Dyn 236:2767–2778PubMedCrossRefGoogle Scholar
  142. 142.
    Cau J, Hall A (2005) Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J Cell Sci 118:2579–2587PubMedCrossRefGoogle Scholar
  143. 143.
    Bieberich E (2008) Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide. Neurosignals 16:124–139PubMedCrossRefGoogle Scholar
  144. 144.
    Bieberich E (2010) There is more to a lipid than just being a fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res 36:1601–1611PubMedCrossRefGoogle Scholar
  145. 145.
    Bieberich E (2004) Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 21:315–327PubMedCrossRefGoogle Scholar
  146. 146.
    Bourbon NA, Sandirasegarane L, Kester M (2002) Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem 277:3286–3292PubMedCrossRefGoogle Scholar
  147. 147.
    Zhou H, Summers SA, Birnbaum MJ, Pittman RN (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 273:16568–16575PubMedCrossRefGoogle Scholar
  148. 148.
    Bieberich E, Hu B, Silva J, MacKinnon S, Yu RK, Fillmore H, Broaddus WC, Ottenbrite RM (2002) Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett 181:55–64PubMedCrossRefGoogle Scholar
  149. 149.
    Herget T, Esdar C, Oehrlein SA, Heinrich M, Schutze S, Maelicke A, van Echten-Deckert G (2000) Production of ceramides causes apoptosis during early neural differentiation in vitro. J Biol Chem 275:30344–30354PubMedCrossRefGoogle Scholar
  150. 150.
    Coelho RP, Saini HS, Sato-Bigbee C (2010) Sphingosine-1-phosphate and oligodendrocytes: from cell development to the treatment of multiple sclerosis. Prostaglandins Other Lipid Mediat 91:139–144PubMedCrossRefGoogle Scholar
  151. 151.
    Miron VE, Jung CG, Kim HJ, Kennedy TE, Soliven B, Antel JP (2008) FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol 63:61–71PubMedCrossRefGoogle Scholar
  152. 152.
    Saini HS, Coelho RP, Goparaju SK, Jolly PS, Maceyka M, Spiegel S, Sato-Bigbee C (2005) Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors. J Neurochem 95:1298–1310PubMedCrossRefGoogle Scholar
  153. 153.
    Dottori M, Leung J, Turnley AM, Pebay A (2008) Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells 26:1146–1154PubMedCrossRefGoogle Scholar
  154. 154.
    Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S, Spiegel S (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257PubMedCrossRefGoogle Scholar
  155. 155.
    Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203PubMedCrossRefGoogle Scholar
  156. 156.
    Bibollet-Bahena O, Almazan G (2009) IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways. J Neurochem 109:1440–1451PubMedCrossRefGoogle Scholar
  157. 157.
    Bieberich E (2005) Replacement of insulin by LongR3-IGF-1 allows for the differentiation of ES cells into neuroprogenitors and insulin-secreting cells. Anal Biochem 346:185–187PubMedCrossRefGoogle Scholar
  158. 158.
    Smith J, Ladi E, Mayer-Proschel M, Noble M (2000) Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci USA 97:10032–10037PubMedCrossRefGoogle Scholar
  159. 159.
    Noble M, Smith J, Power J, Mayer-Proschel M (2003) Redox state as a central modulator of precursor cell function. Ann N Y Acad Sci 991:251–271PubMedCrossRefGoogle Scholar
  160. 160.
    Noble M, Mayer-Proschel M, Proschel C (2005) Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal 7:1456–1467PubMedCrossRefGoogle Scholar
  161. 161.
    Noble M (2006) Implications for CNS repair of redox modulation of cell survival, division and differentiation. Curr Alzheimer Res 3:37–47PubMedCrossRefGoogle Scholar
  162. 162.
    Noble M, Proschel C, Mayer-Proschel M (2004) Getting a GR(i)P on oligodendrocyte development. Dev Biol 265:33–52PubMedCrossRefGoogle Scholar
  163. 163.
    Calkins MJ, Vargas MR, Johnson DA, Johnson JA (2010) Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci 115:557–568PubMedCrossRefGoogle Scholar
  164. 164.
    Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268PubMedCrossRefGoogle Scholar
  165. 165.
    Wang G, Bieberich E (2010) Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development. Cell Death Dis 1:e46PubMedCrossRefGoogle Scholar
  166. 166.
    Numakawa T, Nakayama H, Suzuki S, Kubo T, Nara F, Numakawa Y, Yokomaku D, Araki T, Ishimoto T, Ogura A, Taguchi T (2003) Nerve growth factor-induced glutamate release is via p75 receptor, ceramide, and Ca(2+) from ryanodine receptor in developing cerebellar neurons. J Biol Chem 278:41259–41269PubMedCrossRefGoogle Scholar
  167. 167.
    Sharma C, Smith T, Li S, Schroepfer GJ Jr, Needleman DH (2000) Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: mechanism of action. Chem Phys Lipids 104:1–11PubMedCrossRefGoogle Scholar
  168. 168.
    Beech DJ, Bahnasi YM, Dedman AM, Al-Shawaf E (2009) TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45:583–588PubMedCrossRefGoogle Scholar
  169. 169.
    Ledeen RW, Wu G (2008) Nuclear sphingolipids: metabolism and signaling. J Lipid Res 49:1176–1186PubMedCrossRefGoogle Scholar
  170. 170.
    Novgorodov SA, Chudakova DA, Wheeler BW, Bielawski J, Kindy MS, Obeid LM, Gudz TI (2011) Developmentally regulated ceramide synthase 6 increases mitochondrial Ca2+ loading capacity and promotes apoptosis. J Biol Chem 286:4644–4658PubMedCrossRefGoogle Scholar
  171. 171.
    Ledeen R, Wu G (2007) GM1 in the nuclear envelope regulates nuclear calcium through association with a nuclear sodium-calcium exchanger. J Neurochem 103(Suppl 1):126–134PubMedCrossRefGoogle Scholar
  172. 172.
    Ledeen R, Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116:714–720PubMedCrossRefGoogle Scholar
  173. 173.
    Wu GS, Vaswani KK, Lu ZH, Ledeen RW (1990) Gangliosides stimulate calcium flux in neuro-2A cells and require exogenous calcium for neuritogenesis. J Neurochem 55:484–491PubMedCrossRefGoogle Scholar
  174. 174.
    Wu G, Ledeen RW (1994) Gangliosides as modulators of neuronal calcium. Prog Brain Res 101:101–112PubMedCrossRefGoogle Scholar
  175. 175.
    Wu G, Lu ZH, Ledeen RW (1995) GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J Neurochem 65:1419–1422PubMedCrossRefGoogle Scholar
  176. 176.
    Xie X, Wu G, Lu ZH, Ledeen RW (2002) Potentiation of a sodium–calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J Neurochem 81:1185–1195PubMedCrossRefGoogle Scholar
  177. 177.
    Wu G, Lu ZH, Obukhov AG, Nowycky MC, Ledeen RW (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with alpha5beta1 integrin initiates neurite outgrowth. J Neurosci 27:7447–7458PubMedCrossRefGoogle Scholar
  178. 178.
    Wu G, Xie X, Lu ZH, Ledeen RW (2009) Sodium–calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci USA 106:10829–10834PubMedCrossRefGoogle Scholar
  179. 179.
    Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388PubMedCrossRefGoogle Scholar
  180. 180.
    Ohanian J, Ohanian V (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58:2053–2068PubMedCrossRefGoogle Scholar
  181. 181.
    Yu RK, Suzuki Y, Yanagisawa M (2010) Membrane glycolipids in stem cells. FEBS Lett 584:1694–1699PubMedCrossRefGoogle Scholar
  182. 182.
    Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14PubMedCrossRefGoogle Scholar
  183. 183.
    Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292PubMedCrossRefGoogle Scholar
  184. 184.
    Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50(Suppl):S323–S328PubMedCrossRefGoogle Scholar
  185. 185.
    Balcarova-Stander J, Pfeiffer SE, Fuller SD, Simons K (1984) Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line. EMBO J 3:2687–2694PubMedGoogle Scholar
  186. 186.
    van Meer G, Stelzer EH, Wijnaendts-van-Resandt RW, Simons K (1987) Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol 105:1623–1635PubMedCrossRefGoogle Scholar
  187. 187.
    Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202PubMedCrossRefGoogle Scholar
  188. 188.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  189. 189.
    Butters TD, Hughes RC (1974) Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes. Biochem J 140:469–478PubMedGoogle Scholar
  190. 190.
    Gurd JW, Evans WH, Perkins HR (1972) Chemical characterization of the proteins and glycoproteins of mouse liver plasma membranes solubilized by sequential extraction with aqueous and organic solvents. Biochem J 126:459–466PubMedGoogle Scholar
  191. 191.
    Barriere H, Chailley B, Chambard M, Selzner JP, Mauchamp J, Gabrion J (1988) Cholesterol-rich microdomains in rat and porcine thyroid membranes involved in TSH-induced endocytotic processes. Acta Anat (Basel) 132:205–215CrossRefGoogle Scholar
  192. 192.
    Fields RD, Black JA, Waxman SG (1987) Filipin-cholesterol binding in CNS axons prior to myelination: evidence for microheterogeneity in premyelinated axolemma. Brain Res 404:21–32PubMedCrossRefGoogle Scholar
  193. 193.
    Severs NJ, Robenek H (1983) Detection of microdomains in biomembranes. An appraisal of recent developments in freeze-fracture cytochemistry. Biochim Biophys Acta 737:373–408PubMedGoogle Scholar
  194. 194.
    Bremer EG, Hakomori S (1984) Gangliosides as receptor modulators. Adv Exp Med Biol 174:381–394PubMedCrossRefGoogle Scholar
  195. 195.
    Bremer EG, Hakomori S (1982) GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun 106:711–718PubMedCrossRefGoogle Scholar
  196. 196.
    Hakomori Si SI (2002) The glycosynapse. Proc Natl Acad Sci USA 99:225–232PubMedCrossRefGoogle Scholar
  197. 197.
    Shu L, Lee L, Chang Y, Holzman LB, Edwards CA, Shelden E, Shayman JA (2000) Caveolar structure and protein sorting are maintained in NIH 3T3 cells independent of glycosphingolipid depletion. Arch Biochem Biophys 373:83–90PubMedCrossRefGoogle Scholar
  198. 198.
    Anderson RG, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821–1825PubMedCrossRefGoogle Scholar
  199. 199.
    Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542PubMedCrossRefGoogle Scholar
  200. 200.
    Jasmin JF, Yang M, Iacovitti L, Lisanti MP (2009) Genetic ablation of caveolin-1 increases neural stem cell proliferation in the subventricular zone (SVZ) of the adult mouse brain. Cell Cycle 8:3978–3983PubMedCrossRefGoogle Scholar
  201. 201.
    Balbis A, Parmar A, Wang Y, Baquiran G, Posner BI (2007) Compartmentalization of signaling-competent epidermal growth factor receptors in endosomes. Endocrinology 148:2944–2954PubMedCrossRefGoogle Scholar
  202. 202.
    Biedi C, Panetta D, Segat D, Cordera R, Maggi D (2003) Specificity of insulin-like growth factor I and insulin on Shc phosphorylation and Grb2 recruitment in caveolae. Endocrinology 144:5497–5503PubMedCrossRefGoogle Scholar
  203. 203.
    Bryant MR, Marta CB, Kim FS, Bansal R (2009) Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes. Glia 57:935–946PubMedCrossRefGoogle Scholar
  204. 204.
    Gutierrez J, Brandan E (2010) A novel mechanism of sequestering fibroblast growth factor 2 by glypican in lipid rafts, allowing skeletal muscle differentiation. Mol Cell Biol 30:1634–1649PubMedCrossRefGoogle Scholar
  205. 205.
    Yanagisawa M, Nakamura K, Taga T (2005) Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells. J Biochem 138:285–291PubMedCrossRefGoogle Scholar
  206. 206.
    Miljan EA, Bremer EG (2002) Regulation of growth factor receptors by gangliosides. Sci STKE 160:re15Google Scholar
  207. 207.
    Levental I, Grzybek M, Simons K (2010) Greasing their way: lipid modifications determine protein association with membrane rafts. Biochemistry 49:6305–6316PubMedCrossRefGoogle Scholar
  208. 208.
    Resh MD (2004) Membrane targeting of lipid modified signal transduction proteins. Subcell Biochem 37:217–232PubMedGoogle Scholar
  209. 209.
    Roy S, Plowman S, Rotblat B, Prior IA, Muncke C, Grainger S, Parton RG, Henis YI, Kloog Y, Hancock JF (2005) Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling. Mol Cell Biol 25:6722–6733PubMedCrossRefGoogle Scholar
  210. 210.
    Gelineau-van Waes J, Starr L, Maddox J, Aleman F, Voss KA, Wilberding J, Riley RT (2005) Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res A Clin Mol Teratol 73:487–497PubMedCrossRefGoogle Scholar
  211. 211.
    Marasas WF, Riley RT, Hendricks KA, Stevens VL, Sadler TW, Gelineau-van Waes J, Missmer SA, Cabrera J, Torres O, Gelderblom WC, Allegood J, Martinez C, Maddox J, Miller JD, Starr L, Sullards MC, Roman AV, Voss KA, Wang E, Merrill AH Jr (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134:711–716PubMedGoogle Scholar
  212. 212.
    London M, London E (2004) Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 279:9997–10004PubMedCrossRefGoogle Scholar
  213. 213.
    Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med 82:357–363PubMedCrossRefGoogle Scholar
  214. 214.
    Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077PubMedCrossRefGoogle Scholar
  215. 215.
    Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341PubMedCrossRefGoogle Scholar
  216. 216.
    Suetake K, Liour SS, Tencomnao T, Yu RK (2003) Expression of gangliosides in an immortalized neural progenitor/stem cell line. J Neurosci Res 74:769–776PubMedCrossRefGoogle Scholar
  217. 217.
    Yu RK (1984) Gangliosides: structure and analysis. Adv Exp Med Biol 174:39–53PubMedCrossRefGoogle Scholar
  218. 218.
    Yu RK (1994) Development regulation of ganglioside metabolism. Prog Brain Res 101:31–44PubMedCrossRefGoogle Scholar
  219. 219.
    Yu RK, Macala LJ, Farooq M, Sbaschnig-Agler M, Norton WT, Ledeen RW (1989) Ganglioside and lipid composition of bulk-isolated rat and bovine oligodendroglia. J Neurosci Res 23:136–141PubMedCrossRefGoogle Scholar
  220. 220.
    Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829PubMedCrossRefGoogle Scholar
  221. 221.
    Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–S445PubMedCrossRefGoogle Scholar
  222. 222.
    Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573:406–413PubMedCrossRefGoogle Scholar
  223. 223.
    Bansal R, Winkler S, Bheddah S (1999) Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19:7913–7924PubMedGoogle Scholar
  224. 224.
    Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, Gottesman MM, Bitterman A, Giuliano AE, Cabot MC (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3:633–639PubMedGoogle Scholar
  225. 225.
    Lavie Y, Fiucci G, Czarny M, Liscovitch M (1999) Changes in membrane microdomains and caveolae constituents in multidrug-resistant cancer cells. Lipids 34(Suppl):S57–S63PubMedCrossRefGoogle Scholar
  226. 226.
    Liu YY, Han TY, Giuliano AE, Cabot MC (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15:719–730PubMedCrossRefGoogle Scholar
  227. 227.
    Spassieva S, Bieberich E (2011) The gut-to-breast connection—interdependence of sterols and sphingolipids in multidrug resistance and breast cancer therapy. Anticancer Agents Med Chem (in press)Google Scholar
  228. 228.
    Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, Kono M, Tsuji S, Daniotti JL, Werth N, Sandhoff R, Sandhoff K, Proia RL (2003) Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 100:3445–3449PubMedCrossRefGoogle Scholar
  229. 229.
    Tajima O, Egashira N, Ohmi Y, Fukue Y, Mishima K, Iwasaki K, Fujiwara M, Inokuchi J, Sugiura Y, Furukawa K (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198:74–82PubMedCrossRefGoogle Scholar
  230. 230.
    Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258PubMedCrossRefGoogle Scholar
  231. 231.
    Enver T, Soneji S, Joshi C, Brown J, Iborra F, Orntoft T, Thykjaer T, Maltby E, Smith K, Abu Dawud R, Jones M, Matin M, Gokhale P, Draper J, Andrews PW (2005) Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 14:3129–3140PubMedCrossRefGoogle Scholar
  232. 232.
    Fenderson BA, Radin N, Andrews PW (1993) Differentiation antigens of human germ cell tumours: distribution of carbohydrate epitopes on glycolipids and glycoproteins analyzed using PDMP, an inhibitor of glycolipid synthesis. Eur Urol 23:30–36; discussion 36–37Google Scholar
  233. 233.
    Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R (2006) Human embryonic stem cell lines derived from single blastomeres. Nature 444:481–485PubMedCrossRefGoogle Scholar
  234. 234.
    Schulz TC, Palmarini GM, Noggle SA, Weiler DA, Mitalipova MM, Condie BG (2003) Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 4:27PubMedCrossRefGoogle Scholar
  235. 235.
    Zeng X, Miura T, Luo Y, Bhattacharya B, Condie B, Chen J, Ginis I, Lyons I, Mejido J, Puri RK, Rao MS, Freed WJ (2004) Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22:292–312PubMedCrossRefGoogle Scholar
  236. 236.
    Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312:2454–2464PubMedCrossRefGoogle Scholar
  237. 237.
    Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112(Pt 5):601–612PubMedGoogle Scholar
  238. 238.
    Liour SS, Kraemer SA, Dinkins MB, Su CY, Yanagisawa M, Yu RK (2006) Further characterization of embryonic stem cell-derived radial glial cells. Glia 53:43–56PubMedCrossRefGoogle Scholar
  239. 239.
    Liang YJ, Kuo HH, Lin CH, Chen YY, Yang BC, Cheng YY, Yu AL, Khoo KH, Yu J (2010) Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc Natl Acad Sci USA 107:22564–22569PubMedCrossRefGoogle Scholar
  240. 240.
    Steelant WF, Kawakami Y, Ito A, Handa K, Bruyneel EA, Mareel M, Hakomori S (2002) Monosialyl-Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF-7 cells defines their invasive properties. FEBS Lett 531:93–98PubMedCrossRefGoogle Scholar
  241. 241.
    Zeng G, Gao L, Freischutz B, Tokuda A, Yu RK (1998) Developmental expression of rat brain GD3-and GT3-synthases. Ann N Y Acad Sci 845:430PubMedCrossRefGoogle Scholar
  242. 242.
    Wu G, Lu ZH, Wang J, Wang Y, Xie X, Meyenhofer MF, Ledeen RW (2005) Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci 25:11014–11022PubMedCrossRefGoogle Scholar
  243. 243.
    Xie X, Wu G, Lu ZH, Rohowsky-Kochan C, Ledeen RW (2004) Presence of sodium–calcium exchanger/GM1 complex in the nuclear envelope of non-neural cells: nature of exchanger-GM1 interaction. Neurochem Res 29:2135–2146PubMedCrossRefGoogle Scholar
  244. 244.
    Yamashita T, Wu YP, Sandhoff R, Werth N, Mizukami H, Ellis JM, Dupree JL, Geyer R, Sandhoff K, Proia RL (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102:2725–2730PubMedCrossRefGoogle Scholar
  245. 245.
    Chiavegatto S, Sun J, Nelson RJ, Schnaar RL (2000) A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166:227–234PubMedCrossRefGoogle Scholar
  246. 246.
    Dupree JL, Popko B (1999) Genetic dissection of myelin galactolipid function. J Neurocytol 28:271–279PubMedCrossRefGoogle Scholar
  247. 247.
    Goldman JE, Hirano M, Yu RK, Seyfried TN (1984) GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J Neuroimmunol 7:179–192PubMedCrossRefGoogle Scholar
  248. 248.
    Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20:78–86PubMedCrossRefGoogle Scholar
  249. 249.
    Cakir T, Alsan S, Saybasili H, Akin A, Ulgen KO (2007) Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor Biol Med Model 4:48PubMedCrossRefGoogle Scholar
  250. 250.
    Pfrieger FW, Ungerer N (2011) Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 50:357–371PubMedCrossRefGoogle Scholar
  251. 251.
    Clark WM (2009) Efficacy of citicoline as an acute stroke treatment. Expert Opin Pharmacother 10:839–846PubMedCrossRefGoogle Scholar
  252. 252.
    Takasaki K, Uchida K, Fujikawa R, Nogami A, Nakamura K, Kawasaki C, Yamaguchi K, Morita M, Morishita K, Kubota K, Katsurabayashi S, Mishima K, Fujiwara M, Iwasaki K (2011) Neuroprotective effects of citidine-5-diphosphocholine on impaired spatial memory in a rat model of cerebrovascular dementia. J Pharmacol Sci 116:232–237PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Molecular Medicine and GeneticsGeorgia Health Sciences UniversityAugustaUSA

Personalised recommendations