Advertisement

Neurochemical Research

, Volume 37, Issue 5, pp 911–919 | Cite as

Effects of DL-3-n-Butylphthalide on Vascular Dementia and Angiogenesis

  • Lihong Zhang
  • Lanhai Lü
  • W. M. Chan
  • Yin Huang
  • Maria S. M. Wai
  • David T. Yew
Original Paper

Abstract

3-n-Butylphthalide (NBP) is a compound extracted from Chinese celery and is used as an anti-hypertensive herbal medicine for treating stroke patients. The aim of this study is to demonstrate the effects and mechanisms of this compound through in vitro and in vivo experiments. Culture experiments were performed by adding hydrogen peroxide (H2O2) to SH-SY5Y cells. From the MTT assay result, enhanced cell survival was observed with DL-NBP treatment, regardless of whether they are added before, simultaneously with or after the addition of H2O2. For the in vivo experiment, Spontaneously Hypertensive rats and Wistar Kyoto control rats with chronic cerebral ischemia, which were induced by bilateral transection of the common carotid arteries, were given DL-NBP. Their performances in the place navigation test and spatial probe test in the Morris Water Maze have significantly improved compared with the DL-NBP untreated animals, indicating an improvement in spatial learning and memory in the ischemic-animals. In addition, in the chick embryonic chorioallantoic membrane assay, angiogenesis was more vigorous under the effects of DL-NBP, together with increased expression of growth factors, VEGF, VEGF-receptor and bFGF. All these suggested that one of the mechanisms of DL-NBP might be ameliorating vascular dementia and promoting angiogenesis.

Keywords

DL-3-n-Butylphthalide (NBP) Angiogenesis Vascular dementia Rats Culture Morris water maze 

Notes

Acknowledgments

This work was supported by China Shijiazhuang Pharmaceutical Group Co., Ltd. (Project Ref. No. 7010062).

Conflict of interest

There is no conflict of interest.

References

  1. 1.
    Gironi M, Bianchi A, Russo A, Alberoni M, Ceresa L, Angelini A, Cursano C, Mariani E, Nemni R, Kullmann C, Farina E, Martinelli Boneschi F (2011) Oxidative imbalance in different neurodegenerative diseases with memory impairment. Neurodegener Dis 8:129–137PubMedCrossRefGoogle Scholar
  2. 2.
    Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D, Petersen RC, Schneider JA, Tzourio C, Arnett DK, Bennett DA, Chui HC, Higashida RT, Lindquist R, Nilsson PM, Roman GC, Sellke FW, Seshadri S; American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42:2672–2713Google Scholar
  3. 3.
    Román GC (2008) The epidemiology of vascular dementia. Handb Clin Neurol 89:639–658PubMedCrossRefGoogle Scholar
  4. 4.
    Harrison DG, Gongora MC (2009) Oxidative stress and hypertension. Med Clin North Am 93:621–635PubMedCrossRefGoogle Scholar
  5. 5.
    Bennetta S, Grantb MM, Aldreda S (2009) Oxidative stress in vascular dementia and Alzheimer’s disease: a common pathology. J Alzheimers Dis 17:245–257Google Scholar
  6. 6.
    Zini I, Tomasi A, Grimaldi R, Vannini V, Agnati LF (1992) Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci Lett 138:279–282PubMedCrossRefGoogle Scholar
  7. 7.
    Li L, Zhang B, Tao Y, Wang Y, Wei H, Zhao J, Huang R, Pei Z (2009) DL-3-n-butylphthalide protects endothelial cells against oxidative/nitrosative stress, mitochondrial damage and subsequent cell death after oxygen glucose deprivation in vitro. Brain Res 1290:91–101PubMedCrossRefGoogle Scholar
  8. 8.
    Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113Google Scholar
  9. 9.
    Deng WB, Feng YP (1997) Effect of DL-3-N-Butylphthalide on brain edema in rats subjected to focal cerebral ischemia. Chin Med Sci J 12:102–106PubMedGoogle Scholar
  10. 10.
    Huang JZ, Chen YZ, Su M, Zheng HF, Yang YP, Chen J, Liu CF (2010) Dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP+-induced cellular model of Parkinson’s disease. Neurosci Lett 475:89–94PubMedCrossRefGoogle Scholar
  11. 11.
    Xiong N, Huang J, Chen C, Zhao Y, Zhang Z, Jia M, Zhang Z, Hou L, Yang H, Cao X, Liang Z, Zhang Y, Sun S, Lin Z, Wang T (2011) Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson’s disease. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2011.03.007
  12. 12.
    Li J, Li Y, Ogle M, Zhou X, Song M, Yu SP, Wei L (2010) DL-3-n-butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK pathway. Brain Res 1359:216–226PubMedCrossRefGoogle Scholar
  13. 13.
    Peng Y, Xu SF, Chen G, Wang L, Feng Y, Wang X (2007) l-3-n-Butylphthalide improves cognitive impairment induced by chronic cerebral hypoperfusion in rats. J Pharmacol Exp Ther 321:902–910PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang T, Jia WP, Sun XJ (2010) 3-n-Butylphthalide (NBP) reduces apoptosis and enhances vascular endothelial growth factor (VEGF) up-regulation in diabetic rats. Neurol Res 32:1–7Google Scholar
  15. 15.
    Chong Z, Feng Y (1998) Protective effects of dl-3-n-butylphthalide on changes of regional cerebral blood flow and blood-brain barrier damage following experimental subarachnoid hemorrhage. Chin Med J (Engl) 111:858–860Google Scholar
  16. 16.
    Li QF, Kong SY, Deji QZ, He L, Zhou D (2008) Effects of dl-3-n-butylphthalide on expression of VEGF and bFGF in rat brain with permanent focal cerebral ischemia. Sichuan Da Xue Xue Bao Yi Xue Ban 39:84–88PubMedGoogle Scholar
  17. 17.
    Bromley-Brits K, Deng Y, Song WH (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 53:2920PubMedGoogle Scholar
  18. 18.
    Kirchner LM, Schmidt SP, Gruber BS (1996) Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc Res 51:2–14PubMedCrossRefGoogle Scholar
  19. 19.
    Watanabe H, Ni JW, Sakai Y, Matsumoto K, Murakami Y, Tohda M (1996) Permanent occlusion of bilateral internal carotid arteries produces cognitive deficits in two learning behavior tasks. Nihon Shinkei Seishin Yakurigaku Zasshi 16:19–24PubMedGoogle Scholar
  20. 20.
    Murakami Y, Tanaka E, Sakai Y, Matsumoto K, Li HB, Watanabe H (1997) Tacrine improves working memory deficit caused by permanent occlusion of bilateral common carotid arteries in rats. Jpn J Pharmacol 75:443–446PubMedCrossRefGoogle Scholar
  21. 21.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60PubMedCrossRefGoogle Scholar
  22. 22.
    Zeng G, Tang T, Wu HJ, You WH, Luo JK, Lin Y, Liang QH, Li XQ, Huang X, Yang QD (2010) Salvianolic acid B protects SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptosis. Biol Pharm Bull 33:1337–1342PubMedCrossRefGoogle Scholar
  23. 23.
    Majesky MW (1996) A little VEGF goes a long way. Therapeutic angiogenesis by direct injection of vascular endothelial growth factor-encoding plasmid DNA. Circulation 94:3062–3064PubMedGoogle Scholar
  24. 24.
    Hopkins SP, Bulgrin JP, Sims RL, Bowman B, Donovan DL, Schmidt SP (1998) Controlled delivery of vascular endothelial growth factor promotes neovascularization and maintains limb function in a rabbit model of ischemia. J Vasc Surg 27:886–894PubMedCrossRefGoogle Scholar
  25. 25.
    Wei P, Yu FQ, Chen XL, Tao SX, Han CS, Liu YX (2004) VEGF, bFGF and their receptors at the fetal-maternal interface of the rhesus monkey. Placenta 25:184–196PubMedCrossRefGoogle Scholar
  26. 26.
    Przybylski M (2009) A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care 18:516–519PubMedGoogle Scholar
  27. 27.
    Webber MJ, Tongers J, Newcomb CJ, Marquardt KT, Bauersachs J, Losordo DW, Stupp SI (2011) Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci USA 108:13438–13443PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang T, Yan W, Li Q, Fu J, Liu K, Jia W, Sun X, Liu X (2011) 3-n-butylphthalide (NBP) attenuated neuronal autophagy and amyloid-beta expression in diabetic mice subjected to brain ischemia. Neurol Res 33:396–404PubMedCrossRefGoogle Scholar
  29. 29.
    Wei T, Ni Y, Hou J, Chen C, Zhao B, Xin W (2000) Hydrogen peroxide-induced oxidative damage and apoptosis in cerebellar granule cells: protection by Ginkgo biloba extract. Pharmacol Res 41:427–433PubMedCrossRefGoogle Scholar
  30. 30.
    Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J (2000) Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology 148:103–110PubMedCrossRefGoogle Scholar
  31. 31.
    Shi C, Yao Z, Xu J, Yew DT (2009) Effects of Ginko Extract (EGb761) on oxidative damage under different conditions of serum supply. J Bioenerg Biomembr 41:61–69PubMedCrossRefGoogle Scholar
  32. 32.
    Shi C, Zhao L, Zhu B, Li Q, Yew DT, Yao Z, Xu J (2009) Dosage effects of EGb761 on hydrogen peroxide-induced cell death in SH-SY5Y cells. Chem Biol Interact 180:389–397PubMedCrossRefGoogle Scholar
  33. 33.
    Shi C, Wu F, Yew DT, Xu J, Zhu Y (2010) Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis 15:715–727PubMedCrossRefGoogle Scholar
  34. 34.
    Lestage P, Lockhart B, Roger A (2002) In vivo exploration of cerebral ischemia: use of neuroprotective agents in animal studies. Terapie 57:554–563Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lihong Zhang
    • 1
    • 2
  • Lanhai Lü
    • 3
  • W. M. Chan
    • 1
  • Yin Huang
    • 4
  • Maria S. M. Wai
    • 1
  • David T. Yew
    • 1
  1. 1.Brain Research Centre, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong KongHong KongChina
  2. 2.Department of NeurologyThe First Hospital of Hebei Medical UniversityShijiazhuangChina
  3. 3.Department of AnatomySchool of Medicine, Sun Yat-sen UniversityGuangzhouChina
  4. 4.Central Institute of Pharmaceutical Research, Shijiazhuang Pharmaceutical Group Co., LtdShijiazhuangChina

Personalised recommendations