Neurochemical Research

, Volume 37, Issue 2, pp 417–427

Mimosine-Induced Apoptosis in C6 Glioma Cells Requires the Release of Mitochondria-Derived Reactive Oxygen Species and p38, JNK Activation

  • Shanlou Qiao
  • Keiko Murakami
  • Qinghong Zhao
  • Baoling Wang
  • Hisao Seo
  • Hitoshi Yamashita
  • Xiaotao Li
  • Takashi Iwamoto
  • Masatoshi Ichihara
  • Masataka Yoshino
Original Paper


Growth-inhibitory effects of mimosine, a plant amino acid, on rat C6 glioma cells were analyzed. Mimosine markedly inhibited proliferation and induced apoptosis of C6 glioma cells in a dose- and time-dependent manner. Mimosine-mediated apoptosis was accompanied by promoting reactive oxygen species (ROS) generation in mitochondria, and by decreased mitochondrial membrane potential (Δψ), and release of cytochrome c from mitochondria, followed by caspase 3 activation. Furthermore, mimosine increased the phosphorylation level of c-Jun-N-terminal protein kinase and p38, which was the downstream effect of ROS accumulation. Mimosine was confirmed to show profound effects on apoptosis of C6 glioma cells by ROS-regulated mitochondria pathway, and these results bear on the hypothesized potential for mimosine as promising agents in the treatment of malignant gliomas.


C6 glioma cell Mimosine ROS Apoptosis Mitochondria 


  1. 1.
    Ames BN (1989) Endogenous DNA damage as related to cancer and aging. Mutat Res 214:41–46PubMedCrossRefGoogle Scholar
  2. 2.
    Bass DA, Parce JW, Dechatelet LR et al (1983) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 130:1910–1917PubMedGoogle Scholar
  3. 3.
    Bello L, Carrabba G, Giussani C et al (2001) Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 61:7501–7506PubMedGoogle Scholar
  4. 4.
    Cande C, Cecconi F, Dessen P et al (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734PubMedCrossRefGoogle Scholar
  5. 5.
    Cardone MH, Salvesen GS, Widmann C et al (1997) The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90:315–323PubMedCrossRefGoogle Scholar
  6. 6.
    Chen TC, Hinton DR, Zidovetzki R et al (1998) Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest 78:165–174PubMedGoogle Scholar
  7. 7.
    Dizdaroglu M (1991) Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med 10:225–242PubMedCrossRefGoogle Scholar
  8. 8.
    El-Najjar N, Chatila M, Moukadem H et al (2010) Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15:183–195PubMedCrossRefGoogle Scholar
  9. 9.
    Farinelli SE, Greene LA (1996) Cell cycle blockers mimosine, ciclopirox, and deferoxamine prevent the death of PC12 cells and postmitotic sympathetic neurons after removal of trophic support. J Neurosci 16:1150–1162PubMedGoogle Scholar
  10. 10.
    Fine HA, Dear KB, Loeffler JS et al (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71:2585–2597PubMedCrossRefGoogle Scholar
  11. 11.
    Garrido C, Galluzzi L, Brunet M et al (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433PubMedCrossRefGoogle Scholar
  12. 12.
    Greene BT, Thorburn J, Willingham MC et al (2002) Activation of caspase pathways during iron chelator-mediated apoptosis. J Biol Chem 277:25568–25575PubMedCrossRefGoogle Scholar
  13. 13.
    Hallak M, Vazana L, Shpilberg O et al (2008) A molecular mechanism for mimosine-induced apoptosis involving oxidative stress and mitochondrial activation. Apoptosis 13:147–155PubMedCrossRefGoogle Scholar
  14. 14.
    Harada J, Sugimoto M (1999) Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res 842:311–323PubMedCrossRefGoogle Scholar
  15. 15.
    Hildebrand J, Sahmoud T, Mignolet F et al (1994) Adjuvant therapy with dibromodulcitol and BCNU increases survival of adults with malignant gliomas. EORTC Brain Tumor Group. Neurology 44:1479–1483PubMedGoogle Scholar
  16. 16.
    Ido Y, Muto N, Inada A et al (1999) Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif 32:63–73PubMedCrossRefGoogle Scholar
  17. 17.
    Jha AN, Hande PM, Mullenders LH et al (1995) Mimosine is a potent clastogen in primary and transformed hamster fibroblasts but not in primary or transformed human lymphocytes. Mutagenesis 10:385–391PubMedCrossRefGoogle Scholar
  18. 18.
    Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965PubMedCrossRefGoogle Scholar
  19. 19.
    Jurgensmeier JM, Xie Z, Deveraux Q et al (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002PubMedCrossRefGoogle Scholar
  20. 20.
    Kanzawa T, Kondo Y, Ito H et al (2003) Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63:2103–2108PubMedGoogle Scholar
  21. 21.
    Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3:255–268PubMedCrossRefGoogle Scholar
  22. 22.
    Kontoghiorghes GJ, Chambers S, Hoffbrand AV (1987) Comparative study of iron mobilization from haemosiderin, ferritin and iron(III) precipitates by chelators. Biochem J 241:87–92PubMedGoogle Scholar
  23. 23.
    Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642PubMedCrossRefGoogle Scholar
  24. 24.
    Ku BM, Lee YK, Jeong JY et al (2007) Ethanol-induced oxidative stress is mediated by p38 MAPK pathway in mouse hippocampal cells. Neurosci Lett 419:64–67PubMedCrossRefGoogle Scholar
  25. 25.
    Lalande M, Hanauske-Abel HM (1990) A new compound which reversibly arrests T lymphocyte cell cycle near the G1/S boundary. Exp Cell Res 188:117–121PubMedCrossRefGoogle Scholar
  26. 26.
    Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42PubMedCrossRefGoogle Scholar
  27. 27.
    Marchetti P, Decaudin D, Macho A et al (1997) Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function. Eur J Immunol 27:289–296PubMedCrossRefGoogle Scholar
  28. 28.
    Martindale Jl, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15PubMedCrossRefGoogle Scholar
  29. 29.
    Mikhailov I, Russev G, Anachkova B (2000) Treatment of mammalian cells with mimosine generates DNA breaks. Mutat Res 459:299–306PubMedGoogle Scholar
  30. 30.
    Minotti G, Cairo G, Monti E (1999) Role of iron in anthracycline cardiotoxicity: new tunes for an old song? FASEB J 13:199–212PubMedGoogle Scholar
  31. 31.
    Mosca PJ, Dijkwel PA, Hamlin Jl (1992) The plant amino acid mimosine may inhibit initiation at origins of replication in Chinese hamster cells. Mol Cell Biol 12:4375–4383PubMedGoogle Scholar
  32. 32.
    Navarro R, Busnadiego I, Ruiz-Larrea MB et al (2006) Superoxide anions are involved in doxorubicin-induced ERK activation in hepatocyte cultures. Ann NY Acad Sci 1090:419–428PubMedCrossRefGoogle Scholar
  33. 33.
    Oppenheim EW, Nasrallah IM, Mastri MG et al (2000) Mimosine is a cell-specific antagonist of folate metabolism. J Biol Chem 275:19268–19274PubMedCrossRefGoogle Scholar
  34. 34.
    Panopoulos A, Harraz M, Engelhardt JF et al (2005) Iron-mediated H2O2 production as a mechanism for cell type-specific inhibition of tumor necrosis factor alpha-induced but not interleukin-1beta-induced IkappaB kinase complex/nuclear factor-kappaB activation. J Biol Chem 280:2912–2923PubMedCrossRefGoogle Scholar
  35. 35.
    Pastorino JG, Snyder JW, Serroni A et al (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798PubMedGoogle Scholar
  36. 36.
    Qiao S, Li W, Tsubouchi R et al (2005) Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic Res 39:995–1003PubMedCrossRefGoogle Scholar
  37. 37.
    Qiao S, Li W, Tsubouchi R et al (2005) Involvement of peroxynitrite in capsaicin-induced apoptosis of C6 glioma cells. Neurosci Res 51:175–183PubMedCrossRefGoogle Scholar
  38. 38.
    Qiao S, Li W, Tsubouchi R et al (2004) Role of vanilloid receptors in the capsaicin-mediated induction of iNOS in PC12 cells. Neurochem Res 29:687–693PubMedCrossRefGoogle Scholar
  39. 39.
    Reers M, Smiley ST, Mottola-Hartshorn C et al (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417PubMedCrossRefGoogle Scholar
  40. 40.
    Reno F, Tontini A, Burattini S et al (1999) Mimosine induces apoptosis in the HL60 human tumor cell line. Apoptosis 4:469–477PubMedCrossRefGoogle Scholar
  41. 41.
    Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27:647–653PubMedCrossRefGoogle Scholar
  42. 42.
    Richter C, Gogvadze V, Laffranchi R et al (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74PubMedGoogle Scholar
  43. 43.
    Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444PubMedCrossRefGoogle Scholar
  44. 44.
    Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1410:195–213PubMedCrossRefGoogle Scholar
  45. 45.
    Thompson JF, Morris CJ, Smith IK (1969) New naturally occurring amino acids. Annu Rev Biochem 38:137–158PubMedCrossRefGoogle Scholar
  46. 46.
    Yacoub A, Mitchell C, Lister A et al (2003) Melanoma differentiation-associated 7 (interleukin 24) inhibits growth and enhances radiosensitivity of glioma cells in vitro and in vivo. Clin Cancer Res 9:3272–3281PubMedGoogle Scholar
  47. 47.
    Zalatnai A, Bocsi J (2003) Mimosine, a plant-derived amino acid induces apoptosis in human pancreatic cancer xenografts. Anticancer Res 23:4007–4009PubMedGoogle Scholar
  48. 48.
    Zarubin T, Jing Q, New L et al (2005) Identification of eight genes that are potentially involved in tamoxifen sensitivity in breast cancer cells. Cell Res 15:439–446PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shanlou Qiao
    • 1
  • Keiko Murakami
    • 2
  • Qinghong Zhao
    • 3
  • Baoling Wang
    • 3
  • Hisao Seo
    • 1
  • Hitoshi Yamashita
    • 1
  • Xiaotao Li
    • 4
  • Takashi Iwamoto
    • 1
  • Masatoshi Ichihara
    • 1
  • Masataka Yoshino
    • 5
  1. 1.Department of Biomedical Sciences, College of Life and Health SciencesChubu UniversityAichiJapan
  2. 2.Department of BiochemistryAichi Medical University School of MedicineNagakute, AichiJapan
  3. 3.Department of SurgeryThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  4. 4.Institute of Biomedical SciencesEast China Normal UniversityShanghaiChina
  5. 5.Department of Food and Nutritional EnvironmentKinjo Gakuin UniversityMoriyama-ku, NagoyaJapan

Personalised recommendations