Neurochemical Research

, 36:2322 | Cite as

The Effects of Single and Repeated Exposure to 2.45 GHz Radiofrequency Fields on c-Fos Protein Expression in the Paraventricular Nucleus of Rat Hypothalamus

  • T. Jorge-Mora
  • M. J. Misa-Agustiño
  • J. A. Rodríguez-González
  • F. J. Jorge-Barreiro
  • F. J. Ares-Pena
  • E. López-MartínEmail author
Original Paper


This study investigated the effects of microwave radiation on the PVN of the hypothalamus, extracted from rat brains. Expression of c-Fos was used to study the pattern of cellular activation in rats exposed once or repeatedly (ten times in 2 weeks) to 2.45 GHz radiation in a GTEM cell. The power intensities used were 3 and 12 W and the Finite Difference Time Domain calculation was used to determine the specific absorption rate (SAR). High SAR triggered an increase of the c-Fos marker 90 min or 24 h after radiation, and low SAR resulted in c-Fos counts higher than in control rats after 24 h. Repeated irradiation at 3 W increased cellular activation of PVN by more than 100% compared to animals subjected to acute irradiation and to repeated non-radiated repeated session control animals. The results suggest that PVN is sensitive to 2.45 GHz microwave radiation at non-thermal SAR levels.


Radiofrequency c-Fos Paraventricular nucleus SAR Temperature 



The authors are grateful to the Xunta de Galicia for funding awarded through project 09TIC006206PR. We also greatly appreciate the assistance provided by Jose Carlos Santos, Rafael Fuentes, Eva Dominguez, Isabel Tarrio and Eva Garcia.


  1. 1.
    Sawchenko PE, Swanson LW (1981) Central noradrenergic pathways for the integration of hypothalamic neuroendocrine and autonomic response. Science 214(4521):685–687PubMedCrossRefGoogle Scholar
  2. 2.
    Herman JP, Cullinan WP (1997) Neurocircuitry of stress: central control of hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 29:78–84CrossRefGoogle Scholar
  3. 3.
    Herman JP, Tasker JP, Ziegler DR, Cullinan WE (2002) Local circuit regulation of paraventricular nucleus stress integration Glutamate-GABA connections. Pharmacol Biochem Behav 71:457–468PubMedCrossRefGoogle Scholar
  4. 4.
    Herman JP, Ostrander MM, Müller NK, Figueirido H (2005) Limbic system mechanism of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213PubMedCrossRefGoogle Scholar
  5. 5.
    Jankord R, Herman JP (2008) Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Stress, neurotransmitters, and hormones. Ann NY Acad Sci 1148:63–73CrossRefGoogle Scholar
  6. 6.
    Herman JP, Flak J, Jankord R (2008) Chronic stress plasticity in the hypothalamic paraventricular nucleus. Prog Brain Res 170:353–364 ReviewPubMedCrossRefGoogle Scholar
  7. 7.
    Makino S, Tanaka Y, Nazarloo HP, Noguchi T, Nishimura K, Hashimoto K (2005) Expression of type 1 corticotropin-releasing hormone (CRH) receptor mRNA in the hypothalamic paraventricular nucleus following restraint stress in CRH-deficient mice. Brain Res 1048(1–2):131–137PubMedCrossRefGoogle Scholar
  8. 8.
    Cóndes-Lara M, Rojas-Piloni G, Martinez-Lorenzana G, Rodriguez-Jiménez J, López-Hidalgo M, Freund-Mercier MJ (2006) Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Res 1081(1):126–137PubMedCrossRefGoogle Scholar
  9. 9.
    Kovács KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol Rev 20(6):665–672CrossRefGoogle Scholar
  10. 10.
    Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451PubMedCrossRefGoogle Scholar
  11. 11.
    Cole RL, Sawchenko PE (2002) Neurotransmitter regulation of cellular activation and neuropeptide gena expression in Paraventricular nucleus the Hypothalamus. J Neurosci 22(3):959–969PubMedGoogle Scholar
  12. 12.
    Bullit E (1990) Expression of c-Fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296(4):517–530CrossRefGoogle Scholar
  13. 13.
    Penny ML, Stacy BB, Cornelius J, Higgs ANK, Cunninghan T (2005) The effects of osmotic stimulation and water availability on c-Fos and Fos B staining in the suprapotic and paraventricular nuclei of hypothalamus. Exp Neurol 194:191–202PubMedCrossRefGoogle Scholar
  14. 14.
    McKinley MJ, Hards DK, Oldfield BJ (1994) Identification of neural pathways activated in dehydrated rats by means of Fos-immunochemistry and neural tracing. Brain Res 653(1–2):305–314PubMedCrossRefGoogle Scholar
  15. 15.
    Sharp F, Sagar S, Hicks K, Lowestein D, Hisanaga K (1991) C-Fos mRNA, Fos and Fos-related antigen induction by hypertonic saline and stress, J. Neurosci 11:2321–2331Google Scholar
  16. 16.
    Patronas P, Horowitz M, Simon E, Gerstberger R (1998) Differential stimulation of c-fos expression in hypothalamic nuclei of the rat brain during short-term heat acclimation and mild dehydration. Brain Res 798:127–139PubMedCrossRefGoogle Scholar
  17. 17.
    Senba E, Matsunaga K, Tohyama M, Noguchi K (1993) Stress induced c-fos expression in the rat brain: activation mechanism of sympathetic pathway. Brain Res Bull 31:329–341PubMedCrossRefGoogle Scholar
  18. 18.
    Lebedeva NN (1998) Reactions of the human central nervous system to electromagnetic fields with different biotropic parameters. Biomeditsinskaya Radioélektronika 1:24–36Google Scholar
  19. 19.
    Novikova NS, Kazakova TB, Rogers V, Korneva A (2008) Expression of c-Fos Gene in the rat hypothalamus in electrical pain stimulation and UHF stimulation of the ski. Neurosci Behav Physiol 38:415–420PubMedCrossRefGoogle Scholar
  20. 20.
    Shanin SN, Rybakina EG, Novikova NN, Kozinets IA, Rogers VJ, Korneva EA (2005) Natural killer cell cytotoxic activity and c-Fos protein synthesis in rat hypothalamic cells after painful electric stimulation of the hind limbs and EHF irradiation of the skin. Sci Monit 11(9):309–315Google Scholar
  21. 21.
    Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanism? J Psychiatr Res 35:193–215PubMedCrossRefGoogle Scholar
  22. 22.
    Keck ME, Engelmann M, Müller MB, Henniger MSH, Hermann B, Rupprecht R, Neumann ID, Toschi N, Landgraf R, Post A (2000) Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psychiatr Res 34:265–276PubMedCrossRefGoogle Scholar
  23. 23.
    Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107PubMedCrossRefGoogle Scholar
  24. 24.
    Jorge-Mora T, Alvarez-Folgueiras M, Leiro J, Jorge-Barreiro FJ, Ares-Pena FJ, López-Martín E (2010) Exposure to 2.45 GHz microwave radiation provokes cerebral changes in induction of HSP-90 α/β.Heat shock protein in rat. Prog Electromagn Res PIER 100:351–379CrossRefGoogle Scholar
  25. 25.
    Schmid AG, Partner Engineering (2008) Reference manual for the SEMCAD simulation plat-form for electromagnetic compatibility, antenna design and dosimetry.
  26. 26.
    Paxinos G, Watson C (1996) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  27. 27.
    Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87:6912–6916PubMedCrossRefGoogle Scholar
  28. 28.
    LaHoste J, Yu J, Marshall FJ (1993) Striatal fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc Natl Acad Sci USA 90:7451–7455PubMedCrossRefGoogle Scholar
  29. 29.
    Morrissey RW, Raney S, Heasley E, Rathinavelu P, Dauphinee M, Fallon JH (1999) Iridium exposure increases c-fos expression in the mouse brain only at levels which likely result in tissue heating. Neuroscience 92:1539–1546PubMedCrossRefGoogle Scholar
  30. 30.
    Palkovits M (2000) Stress-induced expression of co-localized neuropeptides in hypothalamic, amygdaloid neurons. Eur J Pharmacol 405:161–166PubMedCrossRefGoogle Scholar
  31. 31.
    Briski K, Gillen E (2001) Differential distribution of Fos expression within the male rat preoptic area and hypothalamus in response to physical vs psychological stress. Brain Res Bull 55:401–408PubMedCrossRefGoogle Scholar
  32. 32.
    Pacák K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22(4):502–548PubMedCrossRefGoogle Scholar
  33. 33.
    Misa-Agustiño MJ, Jorge-Mora MT, Moreno-Piquero E, Ares-Pena FJ, Jorge-Barreiro FJ, López-Martin E (2006) Exposure of rat thyroid gland to 2450 MHz microwave induce changes in expression of HSP-90. In: Proceedings of 4th international workshop on biological effects of EMFs, vol II. Creta, Grece 16–20 October, pp 1018–1024Google Scholar
  34. 34.
    Misa-Agustiño MJ, Jorge-Mora MT, Moreno-Piquero E, Ares-Pena FJ, Jorge-Barreiro FJ, López-Martin E (2008) Microwave-frequency electromagnetic radiation at 2450 MHz triggers effects in morphlogical expression of heat shock protein (HSP-90) in thymus of rats. In: Proceedings of 5th international workshop on biological effects of EMFGoogle Scholar
  35. 35.
    Joëls M, Karst H, Kruger HJ, Lucassen PJ (2007) Chronic stress: Implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72–96PubMedCrossRefGoogle Scholar
  36. 36.
    Stamp JA, Herbert J (1999) Multiple immediate-early gene expression during physiological and endocrine adaptation to repeated stress. Neuroscience 94(4):1313–1322PubMedCrossRefGoogle Scholar
  37. 37.
    Ekimova IV (2003) Changes in the metabolic activity of neurons in the anterior hypothalamic nuclei in rats during hyperthermia, fever, and hypothermia. Neurosci Behav Physiol 33(5):455–460PubMedCrossRefGoogle Scholar
  38. 38.
    Niimi M, Sato M, Tamaki Y, Wada Y, Takahara J, Kawanishi K (1995) Induction of fos protein in the rat hypothalamus elicited by insulin-induced hypoglycaemia. Neurosci Res 23:361–364PubMedCrossRefGoogle Scholar
  39. 39.
    Kononen J, Honkanieemi J, Alho H, Koistinaho J, Iaradola M, Pelto-Huikko M (1992) Fos-like immonoreactivity in therat hypothalamic-pituitary axis after immobilization stress. Endocrinology 130:3041–3047PubMedCrossRefGoogle Scholar
  40. 40.
    Whitehead TD, Brownstein BH, Parry JJ, Thompson D, Cha EG, Moros BA, Rogers BE, Roti Roti JL (2004) Expression of proto-oncogene Fos after exposure to radiofrequency radiation relevant to wireless communications. Radiat Res 64(4):420–430Google Scholar
  41. 41.
    Finnie JW (2005) Expression of the immediate early gene, c-fos, in mouse brain after acute global system for mobile communication microwave exposure. Pathology 37(3):231–233PubMedCrossRefGoogle Scholar
  42. 42.
    Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann DM, Kiessling M, Hossmann KA (1997) Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience 81(3):627–633PubMedCrossRefGoogle Scholar
  43. 43.
    Stagg RB, Pastorian K, Cain C, Adey WR, Byus CW (2001) Effect of immobilization and concurrent exposure to a pulse-modulated microwave field on core body temperature, plasma ACTH and corticosteroid, and brain ornithine decarboxylase, Fos and Jun mRNA. Radiat Res 155(4):584–592PubMedCrossRefGoogle Scholar
  44. 44.
    Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2):477–505PubMedCrossRefGoogle Scholar
  45. 45.
    Belyaev IY, Koch CB, Terenius O, Roxström-Lindquist K, Malmgren LOG, Sommer WH, Salford LG, Persson BRR (2006) Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27(4):295–306PubMedCrossRefGoogle Scholar
  46. 46.
    Lee S, Jhonson D, Dubar K, Dong H, Ge X, Kim CY, Wing C, Jayathilaka N, Emmanuel N, Zhou CQ, Gerber HL, Tseng CC, Wang SM (2005) 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS lett 579:4829–4836PubMedCrossRefGoogle Scholar
  47. 47.
    López-Martín E, Relova-Quinteiro JL, Gallego-Gómez R, Peleteiro-Fernández M, Jorge-Barreiro FJ (2006) GSM radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of picrotoxin. Neurosci Lett 398(1–2):139–144PubMedCrossRefGoogle Scholar
  48. 48.
    Lopez-Martin E, Bregains J, Jorge Barreiro FJ, Sebastian-Franco JL, Moreno-Piquero E, Ares-Pena FJ M (2008) Set-up for measurement of the power absorbed from 900 MHz GSM standing waves by small animals, illustrated by application to picrotoxin-treated rats. Prog Electromagn Res PIER 87:149–165CrossRefGoogle Scholar
  49. 49.
    López-Martín E, Bregains J, Relova-Quinteiro JL, Cadarso-Suárez C, Jorge-Barreiro FJ (2009) The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness. J Neurosci Res 87:1484–1499PubMedCrossRefGoogle Scholar
  50. 50.
    Sidorenko AV, Tasaryuk VV (2002) The effects of electromagnetic radiation in the millimeter range on the brain bioelectrical activity. Radiat Biol 42(5):546–550Google Scholar
  51. 51.
    Beason RC, Semm PM (2002) Responses of neurons to an amplitude modulated microwave stimulus. Neurosci Lett 333:175–178PubMedCrossRefGoogle Scholar
  52. 52.
    Minasyan SM, Grigoryan GY, Saakyan SG, Akhumyan AA, Kalantaryan VP (2007) Effects of the action of microwave-frequency electromagnetic radiation on the spike activity of neurons in the supraoptic nucleus of the hypothalamus in rats. Neurosci Behav Physiol 37(2):175–180PubMedCrossRefGoogle Scholar
  53. 53.
    Adair ER, Adams BW, Akel GM (1984) Minimal changes in hypothalamic temperature accompany microwave-induced alteration of thermoregulatory behavior. Bioelectromagnetics 5(1):3–30CrossRefGoogle Scholar
  54. 54.
    Adair ER, Adams BW, Kelleher SA, Streett JW (1997) Thermoregulatory responses of febrile monkeys during microwave exposure. Ann NY Acad Sci 813:497–507PubMedCrossRefGoogle Scholar
  55. 55.
    Mason PA, Escarciga R, Doyle MJ, Romano WF, Berger RE, Donnellan JP (1997) Amino acid in hypothalamic and caudate nuclei during microwave-induced thermal stress: analysis by microdialysis. Bioelectromagnetics 18:277–283PubMedCrossRefGoogle Scholar
  56. 56.
    Inaba R, Shishido K, Okada A, Moroji T (1992) Effects of whole body microwave exposure on the rat brain contents of biogenic amines. Eur J Appl Physiol Occup Physiol 65(2):124–128PubMedCrossRefGoogle Scholar
  57. 57.
    Lai H, Carino MA, Horita A, Guy A (1998) Low level microwave irradiation and central cholinergic systems. Pharmacol Biochem Behav 33:131–138CrossRefGoogle Scholar
  58. 58.
    Yang J, Chen JM, Song CY, Liu WY, Wang G, Wang CH, Lin BC (2006) Through the central V2, not V1 receptors influencing the endogenous opiate peptide system, arginine vasopressin, not oxytocin in the hypothalamic paraventricular nucleus involves in the antinociception in the rat. Brain Res 1069(1):127–138PubMedCrossRefGoogle Scholar
  59. 59.
    Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J, de Seze R (2004) Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis 17(3):445–454PubMedCrossRefGoogle Scholar
  60. 60.
    Imaki JP, Shibasaki T, Demura H (1995) Regulation of gene expression in the central nervous system by stress: Molecular pathways of stress responses. J Endocrin 42:2121–2130Google Scholar
  61. 61.
    Wotjak CT, Naruo T, Muraoka S, Simchen R, Landgraf R, Engelmann M (2001) Forced swimming stimulates the expression of vasopressin and oxytocin in magnocellular neurons of the rat hypothalamic paraventricular nucleus. Eur J Neurosci 13(12):2273–2281PubMedCrossRefGoogle Scholar
  62. 62.
    Viau V, Sawchenko PE (2002) Hypophysiotropic neurons of paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs repeated restraint stress. J Comp Neurol 445:293–307PubMedCrossRefGoogle Scholar
  63. 63.
    Kovacs K (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297PubMedCrossRefGoogle Scholar
  64. 64.
    Johnson AK, Thunhorst RL (1997) The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanism of central integration. Front Neuroendocrinol 18:292–353PubMedCrossRefGoogle Scholar
  65. 65.
    Robinson DA, Wei F, Wang GD, Li P, Kim SJ, Vogt SK, Muglia LJ, Zhuo M (2002) Oxytocin mediates stress-induced analgesia in adult mice. J Physiol 540:593–606PubMedCrossRefGoogle Scholar
  66. 66.
    Coveñas R, de León M, Cintra A, Gustafsson JA, Fuxe K (1993) Coexistence of c-Fos and glucocorticoid receptor immunoreactivities in the CRF immunoreactive neurons of the paraventricular hypothalamic nucleus of the rat after acute immobilization stress. Neurosci Lett 149(2):149–152PubMedCrossRefGoogle Scholar
  67. 67.
    Kovács KJ, Sawchenko PE (1996) Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 16(1):262–273PubMedGoogle Scholar
  68. 68.
    Kovács KJ, Földes A, Sawchenko PE (2000) Glucocorticoid negative feedback selectively targets vasopressin transcription in parvocellular neurosecretory neurons. J Neurosci 20(10):3843–3852PubMedGoogle Scholar
  69. 69.
    Pacák K, Armando I, Fukuhara K, Kvetnansky R, Palkovits M (1992) Noradrenergic activation in the paraventricular nucleus during acute and chronic immobilization stress in rats: an in vivo microdialysis study. Brain Res 589:91–96PubMedCrossRefGoogle Scholar
  70. 70.
    Shibasaki T, Tsumori C, Hotta M, Imaki T, Yamada K, Demura H (1995) The response pattern of noradrenaline release to repeated stress in the hypothalamic paraventricular nucleus differs according to form of stress rats. Brain Res 670:169–172PubMedCrossRefGoogle Scholar
  71. 71.
    Fernandes GA, Perks P, Cox NKM, Lightman SL, Ingram CD, Shanks N (2002) Habituation and cross-sensitisation of stress-induced hypothalamic-pituitary-adrenal activity: effect of lesions in the paraventricular nucleus of the thalamus or bed nuclei of the stria terminalis. J Neuroendrocrinol 14:593–602CrossRefGoogle Scholar
  72. 72.
    Zelena D, Földes A, Mergl Z, Barna I, Kováks KJ, Makara GB (2004) Effects of repeated restraint stress on hypothalamo-pituitary-adrenocortical function in vasopressin deficient Brattleboro rats. Brain Res Bull 63:521–530PubMedCrossRefGoogle Scholar
  73. 73.
    Steckler T, Holsboer F, Reul JM (1999) Glucocorticoids and depression. Baillieres Best Pract Res Clin Endocrinol Metab 13(4):597–614PubMedCrossRefGoogle Scholar
  74. 74.
    Kováks KJ, Miklós IH, Bali B (2004) GABAergic mechanisms constraining the activity of Hypothalamo-Pituitary-Adrenocortical axis. Ann NY Acad Sci 1018:466–476CrossRefGoogle Scholar
  75. 75.
    Swaab D, Ai-Min Bao, Lucassen PJ (2005) The stress system in human brain in depression and neurodegeneration. Ageing Res Rev 4:141–194PubMedCrossRefGoogle Scholar
  76. 76.
    Novikova NS, Kazakova TB, Rogers VJ, Korneva EA (2002) C-fos gene expression induced in cells in specific hypothalamic structures by noxius mechanical stimulation and its modification by exposure of the skin to extremely high frequency irradiation. Neuroendocrinol Lett 23:4315–4320Google Scholar
  77. 77.
    Novikova NS, Kazakova TB, Rogers V, Korneva EA (2004) Expression of the c-fos gene in spinal cord and brain cells in rats subjected to stress in conditions of exposure to various types of halothane anesthesia. Neurosci Behav Physiol 34(4):407–412PubMedCrossRefGoogle Scholar
  78. 78.
    Sidorov VD, Pershin SB, Bobkova AS, Galenchik AI (1991) The immunomodulating effect of microwaves and of an ultrahigh-frequency electrical field in patients with systemic lupus erythematosus. Vopr Kurortol Fizioter Lech Fiz Kult 4:36–40PubMedGoogle Scholar
  79. 79.
    Sidorov VD, Grigor’eva VD, Pershin SB, Bobkova AS, Korovkina EG (1992) The combined action of an ultrahigh-frequency electrical field bitemporally and decimeter waves on the thymus area in the combined therapy of rheumatoid arthritis patients. Vopr Kurortol Fizioter Lech Fiz Kult 4:9–13PubMedGoogle Scholar
  80. 80.
    Yang J, Chen JM, Yang Y, Liu WY, Song CY, Lin BC (2008) Investigating the role of hypothalamic paraventricular nucleus in nociception of the rat. Int J Neurosci 118(4):473–485PubMedCrossRefGoogle Scholar
  81. 81.
    Yang J, Yang Y, Wang CH, Wang G, Xu H, Liu WY, Lin BC (2009) Effect of arginine vasopressin on acupuncture analgesia in the rat. Peptides 30(2):241–247PubMedCrossRefGoogle Scholar
  82. 82.
    Martinez-Lorenzana G, Espinosa-López L, Carranza M, Aramburo C, Paz-Tres C, Rojas-Piloni G, Cóndes-Lara M (2009) PNV electrical stimulation prolongs withdrawal latencies and releases oxytocin in cerebrospinal fluid, plasma, and spinal cord tissue intact and neuropathic rats. Pain 140:265–273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. Jorge-Mora
    • 1
  • M. J. Misa-Agustiño
    • 1
  • J. A. Rodríguez-González
    • 2
  • F. J. Jorge-Barreiro
    • 1
  • F. J. Ares-Pena
    • 2
  • E. López-Martín
    • 1
    Email author
  1. 1.Departamento de Ciencias Morfológicas, Facultad de MedicinaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Department of Applied PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations