Neurochemical Research

, 36:2195 | Cite as

The Neuroprotective Effect of Curcumin and Nigella sativa Oil Against Oxidative Stress in the Pilocarpine Model of Epilepsy: A Comparison with Valproate

  • Heba S. Aboul EzzEmail author
  • Yasser A. Khadrawy
  • Neveen A. Noor
Original Paper


Oxidative stress has been implicated to play a role in epileptogenesis and pilocarpine-induced seizures. The present study aims to evaluate the antioxidant effects of curcumin, Nigella sativa oil (NSO) and valproate on the levels of malondialdehyde, nitric oxide, reduced glutathione and the activities of catalase, Na+, K+-ATPase and acetylcholinesterase in the hippocampus of pilocarpine-treated rats. The animal model of epilepsy was induced by pilocarpine and left for 22 days to establish the chronic phase of epilepsy. These animals were then treated with curcumin, NSO or valproate for 21 days. The data revealed evidence of oxidative stress in the hippocampus of pilocarpinized rats as indicated by the increased nitric oxide levels and the decreased glutathione levels and catalase activity. Moreover, a decrease in Na+, K+-ATPase activity and an increase in acetylcholinesterase activity occurred in the hippocampus after pilocarpine. Treatment with curcumin, NSO or valproate ameliorated most of the changes induced by pilocarpine and restored Na+, K+-ATPase activity in the hippocampus to control levels. This study reflects the promising anticonvulsant and potent antioxidant effects of curcumin and NSO in reducing oxidative stress, excitability and the induction of seizures in epileptic animals and improving some of the adverse effects of antiepileptic drugs.


Pilocarpine Curcumin Nigella sativa oil Oxidative stress Na+ K+- ATPase—acetylcholinesterase 


  1. 1.
    Gupta YK, Malhotra J (2000) Antiepileptic drug therapy in the twenty first century. Ind J Physiol Pharmacol 4:8–23Google Scholar
  2. 2.
    Schmitz B (2006) Effects of antiepileptic drugs on mood and behavior. Epilepsia 47:28s–33sCrossRefGoogle Scholar
  3. 3.
    Frantseva MV, Perez VJL, Hwang PA et al (2000) Free radical production correlates with cell death in an in vitro model of epilepsy. Eur J Neurosci 12:1431–1439PubMedCrossRefGoogle Scholar
  4. 4.
    Dal-Pizzol F, Klamt F, Vianna M et al (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats. Neurosci Lett 291:179–182PubMedCrossRefGoogle Scholar
  5. 5.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford Science Publications, LondonGoogle Scholar
  6. 6.
    Dröge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370PubMedCrossRefGoogle Scholar
  7. 7.
    Korkmaz A, Oter S, Sadir S et al (2008) Exposure time related oxidative action of hyperbaric oxygen in rat brain. Neurochem Res 33:160–166PubMedCrossRefGoogle Scholar
  8. 8.
    Turski WA, Cavalheiro EA, Schwarz M et al (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav. Brain Res 9:315–335Google Scholar
  9. 9.
    Turski L, Ikonomidou C, Turski WA et al (1989) Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse 3:154–171PubMedCrossRefGoogle Scholar
  10. 10.
    Cavalheiro EA, Leite JP, Bortolotto ZA et al (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32:778–782PubMedCrossRefGoogle Scholar
  11. 11.
    Cavalheiro EA, Fernandes MJ, Turski L et al (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35:1–11PubMedCrossRefGoogle Scholar
  12. 12.
    Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao J, Zhao Y, Zheng W et al (2008) Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Res 1229:224–232PubMedCrossRefGoogle Scholar
  14. 14.
    Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59PubMedCrossRefGoogle Scholar
  15. 15.
    Sumanont Y, Murakami Y, Tohda M et al (2007) Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull 30:1732–1739PubMedCrossRefGoogle Scholar
  16. 16.
    Shin HJ, Lee JY, Son E et al (2007) Curcumin attenuates the kainic acid-induced hippocampal cell death in mice. Neurosci Lett 416:49–54PubMedCrossRefGoogle Scholar
  17. 17.
    Bharal N, Sahaya K, Jain S et al (2008) Curcumin has anticonvulsant activity on increasing current electroshock seizures in mice. Phytother Res 22:1660–1664PubMedCrossRefGoogle Scholar
  18. 18.
    Jyoti A, Sethi P, Sharma D (2009) Curcumin protects against electrobehavioral progression of seizures in the iron-induced experimental model of epileptogenesis. Epilepsy Behav 14:300–308PubMedCrossRefGoogle Scholar
  19. 19.
    Phillips JD (1992) Medicinal plants. Biologist 39:187–191Google Scholar
  20. 20.
    Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17:299–305PubMedCrossRefGoogle Scholar
  21. 21.
    Kanter M, Coskun O, Uysal H (2006) The antioxidative and antihistaminic effect of Nigella sativa and its major constituent, thymoquinone on ethanol-induced gastric mucosal damage. Arch Toxicol 80:217–224PubMedCrossRefGoogle Scholar
  22. 22.
    Kanter M, Coskun O, Kalayci M et al (2006) Neuroprotective effects of Nigella sativa on experimental spinal cord injury in rats. Hum Exp Toxicol 25:127–133PubMedCrossRefGoogle Scholar
  23. 23.
    Ilhan A, Gurel A, Armutcu F et al (2005) Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetetrazol- induced kindling in mice. Neuropharmacology 49:456–464PubMedCrossRefGoogle Scholar
  24. 24.
    Löscher W (1999) Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 58:31–59PubMedCrossRefGoogle Scholar
  25. 25.
    Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37:103–110PubMedCrossRefGoogle Scholar
  26. 26.
    Löscher W (1993) Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acid in the brain. Neurochem Res 18:485–502PubMedCrossRefGoogle Scholar
  27. 27.
    Williams MB, Jope RS (1994) Protein synthesis inhibitors attenuate seizures induced in rats by lithium plus pilocarpine. Exp Neurol 129:169–173PubMedCrossRefGoogle Scholar
  28. 28.
    Ishrat T, Hoda MN, Khan MB et al (2009) Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol 19:636–647PubMedCrossRefGoogle Scholar
  29. 29.
    Abdel-Zaher AO, Abdel-Rahman MS, ELwasei FM (2010) Blockade of nitric oxide overproduction and oxidative stress by Nigella sativa oil attenuates morphine-induced tolerance and dependence in mice. Neurochem Res 35:1557–1565PubMedCrossRefGoogle Scholar
  30. 30.
    Montgomery HAC, Dymock JF (1961) The determination of nitrite in water. Analyst 86:414–416Google Scholar
  31. 31.
    Ruiz-Larrea MB, Leal AM, Liza M et al (1994) Antioxidant effects of estradiol and 2-hydroxyestradiol on iron-induced lipid peroxidation of rat liver microsomes. Steroids 59:383–388PubMedCrossRefGoogle Scholar
  32. 32.
    Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888PubMedGoogle Scholar
  33. 33.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  34. 34.
    Ellman GL, Courtney KD, Andres V et al (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95PubMedCrossRefGoogle Scholar
  35. 35.
    Gorun V, Proinov I, Baltescu V et al (1978) Modified Ellman procedure for assay of cholinesterase in crude-enzymatic preparations. Anal Biochem 86:324–326PubMedCrossRefGoogle Scholar
  36. 36.
    Bowler K, Tirri R (1974) The temperature characteristics of synaptic membrane ATPases from immature and adult rat brain. J Neurochem 23:611–613PubMedCrossRefGoogle Scholar
  37. 37.
    Tsakiris S, Angelogianni P, Schulpis KH et al (2000) Protective effect of l-cysteine and glutathione on rat brain Na + , K + -ATPase inhibition induced by free radicals. Z Naturforsch 55:271–277Google Scholar
  38. 38.
    Arida RM, Scorza FA, Peres CA et al (1999) The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res 34:99–107PubMedCrossRefGoogle Scholar
  39. 39.
    Veliskova J (2006) Behavioral characterization of seizures in rats. In: Pitkänen A, Schwartzkroin PA, Moshé SL (eds) Models of seizures and epilepsy. Burlington, Elsevier Academic Press, pp 601–611Google Scholar
  40. 40.
    Naffah-Mazzacoratti MG, Cavalheiro EA, Ferreira EC et al (2001) Superoxide dismutase, glutathione peroxidase activities and the hydroperoxide concentration are modified in the hippocampus of epileptic rats. Epilepsy Res 46:121–128PubMedCrossRefGoogle Scholar
  41. 41.
    Freitas RM (2009) Investigation of oxidative stress involvement in hippocampus in epilepsy model induced by pilocarpine. Neurosci Lett 462:225–229PubMedCrossRefGoogle Scholar
  42. 42.
    Yüksel A, Cengiz M, Seven M et al (2001) Changes in the antioxidant system in epileptic children receiving antiepileptic drugs: two year prospective studies. J Child Neurol 16:603–606PubMedCrossRefGoogle Scholar
  43. 43.
    Michoulas A, Tong V, Teng XW et al (2006) Oxidative stress in children receiving valproic acid. J Pediatr 149:692–696PubMedCrossRefGoogle Scholar
  44. 44.
    Verrotti A, Scardapane A, Franzoni E et al (2008) Increased oxidative stress in epileptic children treated with valproic acid. Epilepsy Res 78:171–177PubMedCrossRefGoogle Scholar
  45. 45.
    Yis U, Seckin E, Kurul SH et al (2009) Effects of epilepsy and valproic acid on oxidant status in children with idiopathic epilepsy. Epilepsy Res 84:232–237PubMedCrossRefGoogle Scholar
  46. 46.
    Mello LEAM, Cavalheiro EA, Tan AM et al (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34:985–995PubMedCrossRefGoogle Scholar
  47. 47.
    Scorza FA, Sanabria ER, Calderazzo L et al (1998) Glucose utilization during interictal intervals in an epilepsy model induced by pilocarpine: a qualitative study. Epilepsia 39:1041–1045PubMedCrossRefGoogle Scholar
  48. 48.
    Masuda T, Maekawa T, Hidaka K et al (2001) Chemical studies on antioxidant mechanism of curcumin: analysis of oxidative coupling products from curcumin and linoleate. J Agr Food Chem 49:2539–2547CrossRefGoogle Scholar
  49. 49.
    Kelloff GJ, Crowell JA, Hawk ET et al (1996) Strategy and planning for chemopreventive drug development: clinical development plan: curcumin. J Cell Biochem 26:72–85Google Scholar
  50. 50.
    Itoh K, Watanabe M, Yoshikawa K et al (2004) Magnetic resonance and biochemical studies during pentylenetetrazole-kindling development: the relationship between nitric oxide, neuronal nitric oxide synthase and seizures. Neuroscience 129:757–766PubMedCrossRefGoogle Scholar
  51. 51.
    Kato N, Sato S, Yokoyoma H et al (2005) Sequential changes of nitric oxide levels in the temporal lobes of kainic acid-treated mice following application of nitric oxide synthase inhibitors and phenobarbital. Epilepsy Res 65:81–91PubMedCrossRefGoogle Scholar
  52. 52.
    Przegalinski E, Baran L, Siwanowicz J (1996) The role of nitric oxide in chemically- and electrically-induced seizures in mice. Neurosci Lett 217:145–148PubMedGoogle Scholar
  53. 53.
    Rajasekaran K (2005) Seizure-induced oxidative stress in rat brain regions: blockade by nNOS inhibition. Pharmacol Biochem Behav 80:263–272PubMedCrossRefGoogle Scholar
  54. 54.
    Rajasekaran K, Jayakumar R, Venkatachalam K (2003) Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs. Brain Res 979:85–97PubMedCrossRefGoogle Scholar
  55. 55.
    Kovács R, Rabanus A, Otáhal J et al (2009) Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci 29:8565–8577PubMedCrossRefGoogle Scholar
  56. 56.
    Camacho-Barquero I, Villegas I, Sanchez-Calvo JM et al (2007) Curcumin, a Curcuma longa constituent, acts on MAPK p38 pathway modulating COX-2and iNOS expression in chronic experimental colitis. Int Immunopharmacol 7:333–342PubMedCrossRefGoogle Scholar
  57. 57.
    Nanji AA, Jokelainen K, Tipoe GL et al (2003) Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am. J. Physiol. Gastrointest. Liver Physiol 284:G321–G327Google Scholar
  58. 58.
    Sumanont Y, Murakami Y, Tohda M et al (2006) Prevention of kainic acid-induced changes in nitric oxide level and neuronal cell damage in the rat hippocampus by manganese complexes of curcumin and diacetylcurcumin. Life Sci 78:1884–1891PubMedCrossRefGoogle Scholar
  59. 59.
    Mahmood MS, Gilani AH, Khwaja A et al (2003) The in vitro effect of aqueous extract of Nigella sativa seeds on nitric oxide production. Phytother Res 17:921–924PubMedCrossRefGoogle Scholar
  60. 60.
    Safar MM, Abdallah DM, Arafa NM et al (2010) Magnesium supplementation enhances the anticonvulsant potential of valproate in pentylenetetrazol-treated rats. Brain Res 133:58–64CrossRefGoogle Scholar
  61. 61.
    Brannan TS, Maker HS, Raes IP (1981) Regional distribution of catalase in the adult rat brain. J Neurochem 36:307–309PubMedCrossRefGoogle Scholar
  62. 62.
    Matsuyama T (1997) Free radical-mediated cerebral damage after hypoxia/ischemia and stroke. In: Ter Horst GJ, Korf J (eds) Clinical pharmacology of cerebral ischemia. Totowa, NJ Humana Press, pp 153–184Google Scholar
  63. 63.
    Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516PubMedCrossRefGoogle Scholar
  64. 64.
    Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain. Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916PubMedCrossRefGoogle Scholar
  65. 65.
    Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314PubMedCrossRefGoogle Scholar
  66. 66.
    Freitas RM, Vasconcelos SMM, Souza FCF et al (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307–1312PubMedCrossRefGoogle Scholar
  67. 67.
    Sleven H, Gibbs EJ, Heales S et al (2006) Depletion of reduced glutathione precedes inactivation of mitochondrial enzymes following limbic status epilepticus in the rat hippocampus. Neurochem Int 48:75–82PubMedCrossRefGoogle Scholar
  68. 68.
    Freitas RM (2010) Lipoic acid alters δ-aminolevulinic dehydratase, glutathione peroxidase and Na+, K+-ATPase activities and glutathione-reduced levels in rat hippocampus after pilocarpine-induced seizures. Cell Mol Neurobiol 30:381–387PubMedCrossRefGoogle Scholar
  69. 69.
    Heales SJR, Bolanos JP (2002) Impairment of brain mitochondrial function by reactive nitrogen species: the role of glutathione in dictating susceptibility. Neurochem Int 40:469–474PubMedCrossRefGoogle Scholar
  70. 70.
    Heales SJ, Davies SEC, Bates T, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38PubMedCrossRefGoogle Scholar
  71. 71.
    Jovanovic SV, Boone CW, Steenken S et al (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123:3064–3068PubMedCrossRefGoogle Scholar
  72. 72.
    Sun YM, Zhang HY, Chen DZ et al (2002) Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett 4:2909–29011PubMedCrossRefGoogle Scholar
  73. 73.
    Awasthi S, Pandya U, Singhal SS et al (2000) Curcumin-glutathione interactions and the role of human glutathione s-tranferase P1–1. Chem Biol Interact 128:19–38PubMedCrossRefGoogle Scholar
  74. 74.
    Dickinson DA, Iles KE, Zhang H et al (2003) Curcumin alters EpRE and AP-1 binding complexes and elevates glutamate-cysteine ligase gene expression. FASEB J 17:473–475PubMedGoogle Scholar
  75. 75.
    Cui J, Shao L, Young LT et al (2007) Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144:1447–1453PubMedCrossRefGoogle Scholar
  76. 76.
    Hosseinzadeh H, Parvardeh S (2004) Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 11:56–64PubMedCrossRefGoogle Scholar
  77. 77.
    Hajhashemi V, Ghannadi A, Jafarabadi H (2004) Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res 18:195–199PubMedCrossRefGoogle Scholar
  78. 78.
    Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328PubMedCrossRefGoogle Scholar
  79. 79.
    Badary OA, Al-Shabanah OA, Nagi MN et al (1998) Acute and subchronic toxicity of thymoquinone in mice. Drug Dev Res 44:56–61CrossRefGoogle Scholar
  80. 80.
    El-Abhar HS, Abdallah DM, Saleh S (2003) Gastroprotective activity of Nigella sativa oil and its constituent, thymoquinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. J Ethnopharm 84:251–258CrossRefGoogle Scholar
  81. 81.
    Rooney S, Ryan MF (2005) Modes of action of alpha-hederin and thymoquinone, active constituents of Nigella sativa, against HEp-2 cancer cells. Anticancer Res 25:4255–4259PubMedGoogle Scholar
  82. 82.
    Ullrich S, Zhang Y, Avram D et al (2007) Dexamethasone increases Na+/K+ ATPase activity in insulin secreting cells through SGK1. Biochem Biophys Res Commun 352:662–667PubMedCrossRefGoogle Scholar
  83. 83.
    Fernandes MJS, Naffah-Mazzacoratti MG, Cavalheiro EA (1996) Na+, K+-ATPase activity in the rat hippocampus : a study in the pilocarpine model of epilepsy. Neurochem Int 28:497–500PubMedCrossRefGoogle Scholar
  84. 84.
    Cowan CM, Cavalheiro EA (1980) Epilepsy and membrane Na+ K+- ATPase: changes in activity using an experimental model of epilepsy. Acta Physiol Latinoam 30:253–258Google Scholar
  85. 85.
    Walton NY, Nagy AK, Treiman DM (1998) Altered residual ATP content in rat brain cortex subcellular fractions following status epilepticus induced by lithium and pilocarpine. J Mol Neurosci 11:233–242PubMedCrossRefGoogle Scholar
  86. 86.
    Muriel P, Sandoval G (2000) Nitric oxide and peroxynitrite anion modulate liver plasma membrane fluidity and Na + , K + -ATPase by nitric oxide. Biol Chem 4:333–342Google Scholar
  87. 87.
    Muriel C, Cataneda M, Ortega F (2003) Insights into the mechanism of erythrocyte Na+, K+ -ATPase inhibition by nitric oxide and peroxynitrite anion. J Appl Toxicol 23:275–278PubMedCrossRefGoogle Scholar
  88. 88.
    Kaul S, Krishnakanth TP (1994) Effect of retinal deficiency and curcumin or turmeric feeding on brain Na+, K+- ATPase adenosine triphosphate activity. Mol Cell Biochem 137:101–107PubMedCrossRefGoogle Scholar
  89. 89.
    Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: role of neuronal degeneration and adaptive plasticity. Trends Neurosci 21:53–57PubMedCrossRefGoogle Scholar
  90. 90.
    Sharma D, Maurya AK, Singh R (1993) Age related decline in multiple unit action potentials of CA3 region of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine. Neurobiol Aging 14:319–330PubMedCrossRefGoogle Scholar
  91. 91.
    Prall YG, Gambir KK, Ampy FR (1998) Acetylcholinesterase: an enzymatic marker of human red blood cell aging. Life Sci 63:177–184PubMedCrossRefGoogle Scholar
  92. 92.
    Simonié A, Laginja J, Varljen J et al (2000) Lithium plus pilocarpine induced status epilepticus—biochemical changes. Neurosci Res 36:157–166CrossRefGoogle Scholar
  93. 93.
    Freitas RM, Viana GSB, Fonteles MMF (2003) Striatal monoamines levels during status epilepticus. Rev Psiquiatr Clìn 30:76–79Google Scholar
  94. 94.
    Giovagnoli AR, Avanzini G (2006) Learning and memory impairment in patients with temporal lobe epilepsy: relation to the presence, type, and location of brain lesion. Epilepsia 40:904–911CrossRefGoogle Scholar
  95. 95.
    Giacobini E (2000) Cholinesterase inhibitor therapy stabilizes symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 14:S3–S10PubMedCrossRefGoogle Scholar
  96. 96.
    Jope RS, Simonato M, Lally K (1987) Acetylcholine content in rat brain is elevated by status epilepticus induced by lithium and pilocarpine. J Neurochem 49:944–951PubMedCrossRefGoogle Scholar
  97. 97.
    Santos IM, Feitosa CM, Freitas RM (2009) Pilocarpine-induced seizures produce alterations in choline acetyltransferase and acetylcholinesterase activities and deficit memory in rats. Cell Mol Neurobiol 30:569–575CrossRefGoogle Scholar
  98. 98.
    Meyer EM, Cooper JR (1981) Correlations between Na+-K+ ATPase activity and acetylcholine release in rat cortical synaptosomes. J Neurochem 36:467–475PubMedCrossRefGoogle Scholar
  99. 99.
    Sato A, Sato Y, Uchida S (2004) Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain. Neurosci Lett 361:90–93PubMedCrossRefGoogle Scholar
  100. 100.
    Das A, Shanker G, Nath C et al (2002) A comparative study rodents of standardized extracts of Bacopa monniera and ginkgo biloba anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav 73:893–900PubMedCrossRefGoogle Scholar
  101. 101.
    Sharma D, Sethi P, Hussain E et al (2009) Curcumin counteracts the aluminium-induced ageing-related alterations in oxidative stress, Na+, K+ ATPase and protein kinase C in adult and old rat brain regions. Biogerontology 10:489–502PubMedCrossRefGoogle Scholar
  102. 102.
    Ahmed T, Gilani AH (2009) Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav 91:554–559PubMedCrossRefGoogle Scholar
  103. 103.
    Huang M, Li Z, Ichikawa J et al (2006) Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex. Brain Res 1099:44–55PubMedCrossRefGoogle Scholar
  104. 104.
    Brunbech L, Sabers A (2002) Effect of antiepileptic drugs on cognitive function in individuals with epilepsy; a comparative review of newer versus older agents. Drugs 62:593–604PubMedCrossRefGoogle Scholar
  105. 105.
    Lutz MT, Helmstaedter C (2005) EpiTrack: tracking cognitive side effects of medication on attention and executive functions in patients with epilepsy. Epilepsy Behav 7:708–714PubMedCrossRefGoogle Scholar
  106. 106.
    Coenen AML, Konings GMLG, Aldenkamp AP et al (1995) Effects of chronic use of carbamazepine and valproate on cognitive processes. J Epilepsy 8:250–254CrossRefGoogle Scholar
  107. 107.
    Sgobio C, Ghiglieri V, Costa C et al (2010) Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment. Biol Psychiat 67:567–574PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Heba S. Aboul Ezz
    • 1
    Email author
  • Yasser A. Khadrawy
    • 2
  • Neveen A. Noor
    • 1
  1. 1.Laboratory of Neurophysiology, Zoology Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Department of Medical Physiology, Medical DivisionNational Research CenterGizaEgypt

Personalised recommendations