Neurochemical Research

, Volume 36, Issue 11, pp 2002–2007 | Cite as

Comparison of Neurosphere-like Cell Clusters Derived from Dental Follicle Precursor Cells and Retinal Müller Cells

  • Hans Christian Beck
  • Jørgen Petersen
  • Oliver Felthaus
  • Gottfried Schmalz
  • Christian MorsczeckEmail author
Original Paper


Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes. These proteomes probably show essential cellular processes in neurosphere-like cell clusters.


Dental follicle cells Müller cells Retinal progenitor cells Neurospheres Proteomics 

Supplementary material

11064_2011_524_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1130 kb)


  1. 1.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  2. 2.
    Völlner F, Ernst W, Driemel O et al (2009) A two-step strategy for neuronal differentiation in vitro of human dental follicle cells. Differentiation 77(5):433–441PubMedCrossRefGoogle Scholar
  3. 3.
    Hermann A, Gastl R, Liebau S et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J.Cell Sci 117:4411–4422PubMedCrossRefGoogle Scholar
  4. 4.
    Hermann A, Liebau S, Gastl R et al (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83(8):1502–1514PubMedCrossRefGoogle Scholar
  5. 5.
    Monnin J, Morand-Villeneuve N, Michel G et al (2007) Production of neurospheres from mammalian Muller cells in culture. Neurosci Lett 421(1):22–26PubMedCrossRefGoogle Scholar
  6. 6.
    Das AV, Mallya KB, Zhao X et al (2006) Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299(1):283–302PubMedCrossRefGoogle Scholar
  7. 7.
    Lawrence JM, Singhal S, Bhatia B et al (2007) MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells 25(8):2033–2043PubMedCrossRefGoogle Scholar
  8. 8.
    Florian C, Langmann T, Weber BH et al (2008) Murine Muller cells are progenitor cells for neuronal cells and fibrous tissue cells. Biochem Biophys Res Commun 374(2):187–191PubMedCrossRefGoogle Scholar
  9. 9.
    Ernst W, Saugspier M, Felthaus O et al (2009) Comparison of murine dental follicle precursor and retinal progenitor cells after neural differentiation in vitro. Cell Biol Int 33(7):758–764PubMedCrossRefGoogle Scholar
  10. 10.
    Palmisano G, Lendal SE, Engholm-Keller K et al (2010) Selective enrichment of sialic acid-containing glycopeptides using titanium dioxide chromatography with analysis by HILIC and mass spectrometry. Nat Protoc 5(12):1974–1982PubMedCrossRefGoogle Scholar
  11. 11.
    Morsczeck C, Petersen J, Völlner F et al (2009) Proteomic analysis of osteogenic differentiation of dental follicle precursor cells. Electrophoresis 30(7):1175–1184PubMedCrossRefGoogle Scholar
  12. 12.
    Nakatani Y, Yanagisawa M, Suzuki Y et al (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20(1):78–86PubMedCrossRefGoogle Scholar
  13. 13.
    Yalvac ME, Ramazanoglu M, Rizvanov AA et al (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics J 10(2):105–113PubMedCrossRefGoogle Scholar
  14. 14.
    Yano M, Okano HJ, Okano H (2005) Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J Biol Chem 280(13):12690–12699PubMedCrossRefGoogle Scholar
  15. 15.
    De Marzo A, Aruta C, Marigo V (2010) PEDF promotes retinal neurosphere formation and expansion in vitro. Adv Exp Med Biol 664:621–630PubMedCrossRefGoogle Scholar
  16. 16.
    Yan Y-P, Lang BT, Vemuganti R et al (2009) Galectin-3 mediates post-ischemic tissue remodeling. Brain Res 1288:116–124PubMedCrossRefGoogle Scholar
  17. 17.
    Ortiz LA, Dutreil M, Fattman C et al (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007PubMedCrossRefGoogle Scholar
  18. 18.
    Wang X, Fu S, Wang Y et al (2007) Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 36(3):343–354PubMedCrossRefGoogle Scholar
  19. 19.
    Barkho BZ, Munoz AE, Li X et al (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26(12):3139–3149PubMedCrossRefGoogle Scholar
  20. 20.
    Gonçalves LL, Ramkissoon A, Wells PG et al (2009) Prostaglandin H synthase-1-catalyzed bioactivation of neurotransmitters, their precursors, and metabolites: oxidative DNA damage and electron spin resonance spectroscopy studies. Chem Res Toxicol 22(5):842–852PubMedCrossRefGoogle Scholar
  21. 21.
    Gromov P, Gromova I, Friis E et al (2010) Proteomic profiling of mammary carcinomas identifies C7orf24, a gamma-glutamyl cyclotransferase, as a potential cancer biomarker. J Proteome Res 9(8):3941–3953PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hans Christian Beck
    • 1
  • Jørgen Petersen
    • 1
  • Oliver Felthaus
    • 2
  • Gottfried Schmalz
    • 2
  • Christian Morsczeck
    • 2
    Email author
  1. 1.Danish Technological InstituteKoldingDenmark
  2. 2.Department of Operative Dentistry and PeriodontologyUniversity of RegensburgRegensburgGermany

Personalised recommendations