Advertisement

Neurochemical Research

, 36:1850 | Cite as

Synergistic Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on Increase of Neurogenesis Induced by Pyridoxine and Increase of Neural Proliferation in the Mouse Dentate Gyrus

  • Dae Young Yoo
  • Woosuk Kim
  • Sung Min Nam
  • Dae Won Kim
  • Jin Young Chung
  • Soo Young Choi
  • Yeo Sung Yoon
  • Moo-Ho WonEmail author
  • In Koo HwangEmail author
Original Paper

Abstract

We previously observed that pyridoxine (vitamin B6) significantly increased cell proliferation and neuroblast differentiation without any neuronal damage in the hippocampus. In this study, we investigated the effects of sodium butyrate, a histone deacetylase (HDAC) inhibitor which serves as an epigenetic regulator of gene expression, on pyridoxine-induced neural proliferation and neurogenesis induced by the increase of neural proliferation in the mouse dentate gyrus. Sodium butyrate (300 mg/kg, subcutaneously), pyridoxine (350 mg/kg, intraperitoneally), or combination with sodium butyrate were administered to 8-week-old mice twice a day and once a day, respectively, for 14 days. The administration of sodium butyrate significantly increased acetyl-histone H3 levels in the dentate gyrus. Sodium butyrate alone did not show the significant increase of cell proliferation in the dentate gyrus. But, pyridoxine alone significantly increased cell proliferation. Sodium butyrate in combination with pyridoxine robustly enhanced cell proliferation and neurogenesis induced by the increase of neural proliferation in the dentate gyrus, showing that sodium butyrate treatment distinctively enhanced development of neuroblast dendrites. These results indicate that an inhibition of HDAC synergistically promotes neurogenesis induced by a pyridoxine and increase of neural proliferation.

Keywords

Hippocampus Neurogenesis Vitamin B6 Histone deacetylase inhibitor Ki67 Doublecortin 

Notes

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST), Republic of Korea (2010-0007711).

References

  1. 1.
    Hayman AL, Fuller GN, Cavazos JE, Pfleger MJ, Meyers CA, Jackson EF (1998) The hippocampus: normal anatomy and pathology. Am J Roentgenol 171:1139–1146Google Scholar
  2. 2.
    Landfield PW (1988) Hippocampal neurobiological mechanisms of age-related memory dysfunction. Neurobiol Aging 9:571–579PubMedCrossRefGoogle Scholar
  3. 3.
    Winocur G (1988) A neuropsychological analysis of memory loss with age. Neurobiol Aging 9:487–494PubMedCrossRefGoogle Scholar
  4. 4.
    Brown TE, Lee BR, Ryu V, Herzog T, Czaja K, Dong Y (2010) Reducing hippocampal cell proliferation in the adult rat does not prevent the acquisition of cocaine-induced conditioned place preference. Neurosci Lett 481:41–46PubMedCrossRefGoogle Scholar
  5. 5.
    Srivastava N, Seth K, Srivastava N, Khanna VK, Agrawal AK (2008) Functional restoration using basic fibroblast growth factor (bFGF) infusion in Kainic acid induced cognitive dysfunction in rat: neurobehavioural and neurochemical studies. Neurochem Res 33:1169–1177PubMedCrossRefGoogle Scholar
  6. 6.
    Lee S, Kim DH, Lee DH et al (2010) Oroxylin A, a flavonoid, stimulates adult neurogenesis in the hippocampal dentate gyrus region of mice. Neurochem Res 35:1725–1732PubMedCrossRefGoogle Scholar
  7. 7.
    Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40PubMedCrossRefGoogle Scholar
  8. 8.
    Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA (2004) Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially. Proc Natl Acad Sci USA 101:7181–7186PubMedCrossRefGoogle Scholar
  9. 9.
    Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337PubMedCrossRefGoogle Scholar
  10. 10.
    Cayre M, Malaterre J, Scotto-Lomassese S, Strambi C, Strambi A (2002) The common properties of neurogenesis in the adult brain: from invertebrates to vertebrates. Comp Biochem Physiol B Biochem Mol Biol 132:1–15PubMedCrossRefGoogle Scholar
  11. 11.
    Wang C, Zhang M, Sun C et al (2011) Sustained increase in adult neurogenesis in the rat hippocampal dentate gyrus after transient brain ischemia. Neurosci Lett 488:70–75PubMedCrossRefGoogle Scholar
  12. 12.
    Paizanis E, Kelaï S, Renoir T, Hamon M, Lanfumey L (2007) Life-long hippocampal neurogenesis: environmental, pharmacological and neurochemical modulations. Neurochem Res 32:1762–1771PubMedCrossRefGoogle Scholar
  13. 13.
    Ashraf SI, Ip YT (1998) Transcriptional control: repression by local chromatin modification. Curr Biol 8:R683–R686PubMedCrossRefGoogle Scholar
  14. 14.
    MacDonald JL, Roskams AJ (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88:170–183PubMedCrossRefGoogle Scholar
  15. 15.
    Israël M (2003) Genetic adaptation controlled by methylations and acetylations at the nuclear and cytosolic levels: a hypothetical model. Neurochem Res 28:631–635PubMedCrossRefGoogle Scholar
  16. 16.
    Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304PubMedCrossRefGoogle Scholar
  17. 17.
    Alarcón JM, Malleret G, Touzani K et al (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959PubMedCrossRefGoogle Scholar
  18. 18.
    Lattal KM, Barrett RM, Wood MA (2007) Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav Neurosci 121:1125–1131PubMedCrossRefGoogle Scholar
  19. 19.
    Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559PubMedCrossRefGoogle Scholar
  20. 20.
    Göttlicher M, Minucci S, Zhu P et al (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978PubMedCrossRefGoogle Scholar
  21. 21.
    Hao Y, Creson T, Zhang L et al (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599PubMedCrossRefGoogle Scholar
  22. 22.
    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 101:16659–16664PubMedCrossRefGoogle Scholar
  23. 23.
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741PubMedCrossRefGoogle Scholar
  24. 24.
    Yao X, Zhang JR, Huang HR, Dai LC, Liu QJ, Zhang M (2010) Histone deacetylase inhibitor promotes differentiation of embryonic stem cells into neural cells in adherent monoculture. Chin Med J 123:734–738PubMedGoogle Scholar
  25. 25.
    Yu IT, Park JY, Kim SH, Lee JS, Kim YS, Son H (2009) Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56:473–480PubMedCrossRefGoogle Scholar
  26. 26.
    Yoo DY, Kim W, Kim DW et al (2011) Pyridoxine enhances cell proliferation and neuroblast differentiation by upregulating the GABAergic system in the mouse dentate gyrus. Neurochem Res 36:713–721PubMedCrossRefGoogle Scholar
  27. 27.
    Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRefGoogle Scholar
  28. 28.
    Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doulecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14PubMedCrossRefGoogle Scholar
  29. 29.
    Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  30. 30.
    Rogers KS, Mohan C (1994) Vitamin B6 metabolism and diabetes. Biochem Med Metab Biol 52:10–17PubMedCrossRefGoogle Scholar
  31. 31.
    Dakshinamurti K, Paulose CS, Viswanathan M, Siow YL, Sharma SK, Bolster B (1990) Neurobiology of pyridoxine. Ann N Y Acad Sci 585:128–144PubMedCrossRefGoogle Scholar
  32. 32.
    Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016PubMedCrossRefGoogle Scholar
  33. 33.
    Hess-Stumpp H (2005) Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur J Cell Biol 84:109–121PubMedCrossRefGoogle Scholar
  34. 34.
    Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546PubMedCrossRefGoogle Scholar
  35. 35.
    Kim HJ, Leeds P, Chuang DM (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110:1226–1240PubMedCrossRefGoogle Scholar
  36. 36.
    Kirksey A, Morré DM, Wasynczuk AZ (1990) Neuronal development in vitamin B6 deficiency. Ann N Y Acad Sci 585:202–218PubMedCrossRefGoogle Scholar
  37. 37.
    Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815PubMedCrossRefGoogle Scholar
  38. 38.
    Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593PubMedCrossRefGoogle Scholar
  39. 39.
    Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM (2003) Becoming a new neuron in the adult olfactory bulb. Nat Neurosci 6:507–518PubMedGoogle Scholar
  40. 40.
    Wang DD, Krueger DD, Bordey A (2003) Biophysical properties and ionic signature of neuronal progenitors of the postnatal subventricular zone in situ. J Neurophysiol 90:2291–2302PubMedCrossRefGoogle Scholar
  41. 41.
    Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29:181–189PubMedCrossRefGoogle Scholar
  42. 42.
    Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol 550:785–800PubMedCrossRefGoogle Scholar
  43. 43.
    Overstreet Wadiche L, Bromberg DA, Bensen AL, Westbrook GL (2005) GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 94:4528–4532PubMedCrossRefGoogle Scholar
  44. 44.
    Karten YJ, Jones MA, Jeurling SI, Cameron HA (2006) GABAergic signaling in young granule cells in the adult rat and mouse dentate gyrus. Hippocampus 16:312–320PubMedCrossRefGoogle Scholar
  45. 45.
    Kumar A, Choi KH, Renthal W et al (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314PubMedCrossRefGoogle Scholar
  46. 46.
    Pandey SC, Ugale R, Zhang H, Tang L, Prakash A (2008) Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 28:3729–3737PubMedCrossRefGoogle Scholar
  47. 47.
    Gundersen BB, Blendy JA (2009) Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety. Neuropharmacology 57:67–74PubMedCrossRefGoogle Scholar
  48. 48.
    Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM (2009) The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 14:51–59PubMedCrossRefGoogle Scholar
  49. 49.
    Abraham PM, Kuruvilla KP, Mathew J, Malat A, Joy S, Paulose CS (2010) Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: neuroprotective role of pyridoxine and Aegle marmelose. J Biomed Sci 17:78PubMedCrossRefGoogle Scholar
  50. 50.
    Tian F, Marini AM, Lipsky RH (2010) Effects of histone deacetylase inhibitor Trichostatin A on epigenetic changes and transcriptional activation of Bdnf promoter 1 by rat hippocampal neurons. Ann N Y Acad Sci 1199:186–193PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dae Young Yoo
    • 1
  • Woosuk Kim
    • 1
  • Sung Min Nam
    • 1
  • Dae Won Kim
    • 2
  • Jin Young Chung
    • 3
  • Soo Young Choi
    • 2
  • Yeo Sung Yoon
    • 1
  • Moo-Ho Won
    • 4
    Email author
  • In Koo Hwang
    • 1
    Email author
  1. 1.Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary ScienceSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Biomedical Sciences, and Research Institute for Bioscience and BiotechnologyHallym UniversityChuncheonSouth Korea
  3. 3.Department of NeurologySeoul National University HospitalSeoulSouth Korea
  4. 4.Department of Neurobiology, School of MedicineKangwon National UniversityChuncheonSouth Korea

Personalised recommendations