Neurochemical Research

, Volume 36, Issue 9, pp 1578–1586 | Cite as

Regulatory Mechanisms of Nervous Systems with Glycosphingolipids

  • Koichi Furukawa
  • Yuhsuke Ohmi
  • Yuki Ohkawa
  • Noriyo Tokuda
  • Yuji Kondo
  • Orie Tajima
  • Keiko Furukawa
Review

Abstract

A number of studies have suggested functions of sialic acid-containing glycosphingolipids (gangliosides) in the nervous system. However, results of analyses of the mutant mice lacking gangliosides suggested that they play crucial roles in the maintenance of integrity and repair of the nervous tissues. Furthermore, results of double knockout mice lacking all gangliosides except GM3 (GM3-only mice) suggested that deficiency of gangliosides induced complement activation and inflammation, leading to neurodegeneration. Generation of triple knockout mice by mating GM3-only mice and C3-deficient mice verified the involvement of complement systems in the inflammation and neurodegeneration. For the mechanisms of the complement activation, functional disorders of complement-regulatory proteins such as CD55 and CD59, which belong to GPI-anchored proteins, should be main factors. These results suggested that normal composition of gangliosides is essential for the maintenance of lipid rafts. Therefore, it was suggested that regulation of the complement systems and suppression of the inflammation should be important for the treatment of neurodegeneration, having common aspects with other neurodegenerative diseases such as Alzheimer disease.

Keywords

Gangliosides Inflammation Degeneration Rafts Complement Knockout 

References

  1. 1.
    Klenk E, Vater W, Bartsch G (1957) The storage of gangliosides in nervous tissue in Tay-Sachs disease and the changes in material preserved in formalin. J Neurochem 1:203–206PubMedCrossRefGoogle Scholar
  2. 2.
    Schengrund CL (1990) The role(s) of gangliosides in neural differentiation and repair: a perspective. Brain Res Bull 24:131–141PubMedCrossRefGoogle Scholar
  3. 3.
    Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 31:18713–18716Google Scholar
  4. 4.
    Nagai Y (1995) Functional roles of gangliosides in bio-signaling. Behav Brain Res 66:99–104PubMedCrossRefGoogle Scholar
  5. 5.
    Yu RK, Macala LJ, Taki T et al (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829PubMedCrossRefGoogle Scholar
  6. 6.
    Furukawa K, Tsuchida A, Furukawa K (2007) Biosynthesis of Glycolipids. In: Kamerling JP, Boons GJ, Lee YC et al (eds) Comprehensive glycoscience From Chemistry to Systems Biology. Elsevier, Oxford, pp 105–114CrossRefGoogle Scholar
  7. 7.
    Honke K, Hirahara Y, Dupree J et al (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci USA 99:4227–4232PubMedCrossRefGoogle Scholar
  8. 8.
    Takamiya K, Yamamoto A, Furukawa K et al (1996) Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides, but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA 93:10662–10667PubMedCrossRefGoogle Scholar
  9. 9.
    Sugiura Y, Furukawa K, Tajima O et al (2005) Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience 135:167–1178CrossRefGoogle Scholar
  10. 10.
    Sheikh KA, Sun J, Liu Y et al (1999) Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA 96:7532–7537PubMedCrossRefGoogle Scholar
  11. 11.
    Furukawa K, Tokuda N, Okuda T et al (2004) Glycosphingolipids in engineered mice: insights into function. Semin Cell Dev Biol 15:389–396PubMedCrossRefGoogle Scholar
  12. 12.
    Furukawa K, Aixinjueluo W, Kasama T (2008) Disruption of GM2/GD2 synthase gene resulted in neo-expression of 9-O-acetyl GD3 irrespective of Tis21. J Neurochem 105:1057–1066PubMedCrossRefGoogle Scholar
  13. 13.
    Okada M, Itoh M, Haraguchi M et al (2002) b-series ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis, but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277:1633–1636PubMedCrossRefGoogle Scholar
  14. 14.
    Shevchuk NA, Hathout Y, Epifano O et al (2007) Alteration of ganglioside synthesis by GM3 synthase knockout in murine embryonic fibroblasts. Biochim Biophys Acta 1771:1226–1234PubMedGoogle Scholar
  15. 15.
    Yamashita T, Wada R, Sasaki T et al (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147PubMedCrossRefGoogle Scholar
  16. 16.
    Kittaka D, Itoh M, Ohmi Y et al (2008) Impaired hypoglossal nerve regeneration in complex ganglioside-lacking mutant mice: down-regulation of neurotrophic factors and receptors as possible mechanisms. Glycobiology 18:509–516PubMedCrossRefGoogle Scholar
  17. 17.
    Inoue M, Fujii Y, Furukawa K et al (2002) Refractory skin injury in the complex knock-out mice expressing only GM3 ganglioside. J Biol Chem 277:29881–29888PubMedCrossRefGoogle Scholar
  18. 18.
    Tajima O, Egashira N, Ohmi Y et al (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198:74–82PubMedCrossRefGoogle Scholar
  19. 19.
    Tajima O, Egashira N, Ohmi Y et al (2010) Dysfunction of muscarinic acetylcholine receptors as a substantial basis for progressive neurological deterioration in GM3-only mice. Behav Brain Res 206:101–108PubMedCrossRefGoogle Scholar
  20. 20.
    Kawai H, Allende ML, Wada R et al (2001) Mice expressing only monosialo- ganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276:6885–6888PubMedCrossRefGoogle Scholar
  21. 21.
    Ohmi Y, Tajima O, Ohkawa Y et al (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci USA 106:22405–22410PubMedCrossRefGoogle Scholar
  22. 22.
    Yamashita T, Wu YP, Sandhoff R et al (2005) Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci USA 102:2725–2730PubMedCrossRefGoogle Scholar
  23. 23.
    Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321PubMedCrossRefGoogle Scholar
  24. 24.
    Tenner AJ (2001) Complement in Alzheimer’s disease: opportunities for modulating protective and pathogenic events. Neurobiol Aging 22:849–861PubMedCrossRefGoogle Scholar
  25. 25.
    McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378PubMedCrossRefGoogle Scholar
  26. 26.
    van Beek J, Elward K, Gasque P (2003) Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann NY Acad Sci 992:56–71PubMedCrossRefGoogle Scholar
  27. 27.
    Stevens B, Allen NJ, Vazquez LE et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178PubMedCrossRefGoogle Scholar
  28. 28.
    Jeyakumar M, Thomas R, Elliot-Smith E et al (2003) Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain 126(Pt 4):974–987PubMedCrossRefGoogle Scholar
  29. 29.
    Wada R, Tifft CJ, Proia RL (2000) Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc Natl Acad Sci USA 97:10954–10959PubMedCrossRefGoogle Scholar
  30. 30.
    Hayase T, Shimizu J, Goto T, Nozaki Y et al (2010) Unilaterally and rapidly progressing white matter lesion and elevated cytokines in a patient with Tay-Sachs disease. Brain Dev 32:244–247PubMedCrossRefGoogle Scholar
  31. 31.
    Baudry M, Yao Y, Simmons D et al (2003) Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 184:887–903PubMedCrossRefGoogle Scholar
  32. 32.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572PubMedCrossRefGoogle Scholar
  33. 33.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50PubMedCrossRefGoogle Scholar
  34. 34.
    Ohmi Y, Tajima O, Ohkawa Y et al (2011) Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem 116:926–935PubMedCrossRefGoogle Scholar
  35. 35.
    Kabayama K, Sato T, Saito K et al (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104:13678–13683PubMedCrossRefGoogle Scholar
  36. 36.
    Toledo MS, Suzuki E, Handa K et al (2005) Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 280:16227–16234PubMedCrossRefGoogle Scholar
  37. 37.
    Mitsuda T, Furukawa K, Fukumoto S et al (2002) Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 277:11239–11246PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang Q, Furukawa K, Chen HH et al (2006) Metastatic potential of mouse Lewis lung cancer cells is regulated via ganglioside GM1 by modulating the matrix metalloprotease-9 localization in lipid rafts. J Biol Chem 281:18145–18155PubMedCrossRefGoogle Scholar
  39. 39.
    Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103(Suppl 1):135–142PubMedCrossRefGoogle Scholar
  40. 40.
    Fujita A, Cheng J, Hirakawa M et al (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18:2112–2122PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Koichi Furukawa
    • 1
  • Yuhsuke Ohmi
    • 1
  • Yuki Ohkawa
    • 1
  • Noriyo Tokuda
    • 1
  • Yuji Kondo
    • 1
  • Orie Tajima
    • 2
  • Keiko Furukawa
    • 2
  1. 1.Department of Biochemistry IINagoya University Graduate School of MedicineShowa-ku, NagoyaJapan
  2. 2.Department of Life and Medical SciencesChubu University College of Life and Health SciencesKasugaiJapan

Personalised recommendations