Advertisement

Neurochemical Research

, Volume 36, Issue 8, pp 1501–1511 | Cite as

Hydrogen-Rich Saline is Cerebroprotective in a Rat Model of Deep Hypothermic Circulatory Arrest

  • Li Shen
  • Jun Wang
  • Kun Liu
  • Chunzhang Wang
  • Changtian Wang
  • Haiwei Wu
  • Qiang Sun
  • Xuejun Sun
  • Hua Jing
Original Paper

Abstract

Deep hypothermic circulatory arrest (DHCA) has been widely used in the operations involving the aortic arch and brain aneurysm since 1950s; but prolonged DHCA contributes significantly to neurological deficit which remains a major cause of postoperative morbidity and mortality. It has been reported that hydrogen exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radical. In this study, DHCA treated rats developed a significant oxidative stress, inflammatory reaction and apoptosis. The administration of HRS resulted in a significant decrease in the brain injury, together with lower production of IL-1β, TNF-α, 8-OHdG and MDA as well as decreased activity of NOS while increased activity of SOD. The apoptotic index as well as the expressions of caspase-3 in brain tissue was significantly decreased after treatment. HRS administration significantly attenuated the severity of DHCA induced brain injury by mechanisms involving amelioration of oxidative stress, down-regulation of inflammatory factors and reduction of apoptosis.

Keywords

Cerebral protection Deep hypothermic circulatory arrest Hydrogen Oxidative stress Rat 

Abbreviation

DHCA

Deep hypothermic circulatory arrest

8-OH-dG

8-Hydroxydeoxyguanosine

ELISA

Enzyme-linked immunosorbent assay

EMSA

Electromobility Shift Analysis

HRS

Hydrogen-rich saline

IL-1β

Interleukin-1β

MDA

Malondialdehyde

NF-κB

Nuclear factor-κB

NOS

Nitric oxide synthase

RNS

Reactive nitrogen species

ROS

Reactive oxygen species

SIRS

Systemic inflammatory response syndrome

SOD

Superoxide dismutase

TNF-α

Tumor necrosis factor-α

Notes

Acknowledgments

This study was supported by grant from the National Natural Science Foundation of China (No. 30972969). We sincerely thank Dr. Geng-bao Feng and Miss Kang-li Hui for their excellent technical assistance. We also sincerely thank Dr. Bing Guan for his assistance with pathology analysis and Dr. Yi Li for language editing.

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Ergin MA, O’Connor J, Guinto R, Griepp RB (1982) Experience with profound hypothermia and circulatory arrest in the treatment of aneurysms of the aortic arch Aortic arch replacement for acute arch dissections. J Thorac Cardiovasc Surg 84:649–655PubMedGoogle Scholar
  2. 2.
    Niazi SA, Lewis FJ (1957) Profound hypothermia in the monkey with recovery after long periods of cardiac standstill. J Appl Physiol 10:137–138PubMedGoogle Scholar
  3. 3.
    Crawford ES, Svensson LG, Coselli JS, Safi HJ, Hess KR (1989) Surgical treatment of aneurysm and/or dissection of the ascending aorta, transverse aortic arch, and ascending aorta and transverse aortic arch. Factors influencing survival in 717 patients. J Thorac Cardiovasc Surg 98:659–673; discussion 673–654Google Scholar
  4. 4.
    Ergin MA, Uysal S, Reich DL, Apaydin A, Lansman SL, McCullough JN, Griepp RB (1999) Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann Thorac Surg 67:1887–1890; discussion 1891–1884Google Scholar
  5. 5.
    Harrington DK, Bonser M, Moss A, Heafield MT, Riddoch MJ, Bonser RS (2003) Neuropsychometric outcome following aortic arch surgery: a prospective randomized trial of retrograde cerebral perfusion. J Thorac Cardiovasc Surg 126:638–644PubMedCrossRefGoogle Scholar
  6. 6.
    Parks DA, Granger DN (1988) Ischemia-reperfusion injury: a radical view. Hepatology 8:680–682PubMedCrossRefGoogle Scholar
  7. 7.
    Summers ST, Zinner MJ, Freischlag JA (1993) Production of endothelium-derived relaxing factor (EDRF) is compromised after ischemia and reperfusion. Am J Surg 166:216–220PubMedCrossRefGoogle Scholar
  8. 8.
    Betteridge DJ (2000) What is oxidative stress? Metabolism 49:3–8PubMedCrossRefGoogle Scholar
  9. 9.
    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694PubMedCrossRefGoogle Scholar
  10. 10.
    Sato Y, Kajiyama S, Amano A, Kondo Y, Sasaki T, Handa S, Takahashi R, Fukui M, Hasegawa G, Nakamura N, Fujinawa H, Mori T, Ohta M, Obayashi H, Maruyama N, Ishigami A (2008) Hydrogen-rich pure water prevents superoxide formation in brain slices of vitamin C-depleted SMP30/GNL knockout mice. Biochem Biophys Res Commun 375:346–350PubMedCrossRefGoogle Scholar
  11. 11.
    Nagata K, Nakashima-Kamimura N, Mikami T, Ohsawa I, Ohta S (2009) Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice. Neuropsychopharmacology 34:501–508PubMedCrossRefGoogle Scholar
  12. 12.
    Sun Q, Cai J, Zhou J, Tao H, Zhang JH, Zhang W, Sun XJ (2010) Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity*. Crit Care MedGoogle Scholar
  13. 13.
    Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, Ohta S, Sun X, Xu W, Tao H, Li R (2008) Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett 441:167–172PubMedCrossRefGoogle Scholar
  14. 14.
    Buchholz BM, Kaczorowski DJ, Sugimoto R, Yang R, Wang Y, Billiar TR, McCurry KR, Bauer AJ, Nakao A (2008) Hydrogen inhalation ameliorates oxidative stress in transplantation induced intestinal graft injury. Am J Transplant 8:2015–2024PubMedCrossRefGoogle Scholar
  15. 15.
    Zheng X, Mao Y, Cai J, Li Y, Liu W, Sun P, Zhang JH, Sun X, Yuan H (2009) Hydrogen-rich saline protects against intestinal ischemia/reperfusion injury in rats. Free Radic Res 43:478–484PubMedCrossRefGoogle Scholar
  16. 16.
    Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y, Yan RL, Su N, Ruan CP, Sun XJ, Wang Q (2009) The effects of hydrogen-rich saline on the contractile and structural changes of intestine induced by ischemia-reperfusion in Rats. J Surg ResGoogle Scholar
  17. 17.
    Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K (2008) Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 373:30–35PubMedCrossRefGoogle Scholar
  18. 18.
    Sun Q, Kang Z, Cai J, Liu W, Liu Y, Zhang JH, Denoble PJ, Tao H, Sun X (2009) Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp Biol Med (Maywood) 234:1212–1219CrossRefGoogle Scholar
  19. 19.
    Chen C, Chen Q, Mao Y, Xu S, Xia C, Shi X, Zhang JH, Yuan H, Sun X (2010) Hydrogen-rich saline protects against spinal cord injury in rats. Neurochem Res 35:1111–1118PubMedCrossRefGoogle Scholar
  20. 20.
    Gharib B, Hanna S, Abdallahi OM, Lepidi H, Gardette B, De Reggi M (2001) Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation. C R Acad Sci III 324:719–724PubMedGoogle Scholar
  21. 21.
    Ohsawa I, Nishimaki K, Yamagata K, Ishikawa M, Ohta S (2008) Consumption of hydrogen water prevents atherosclerosis in apolipoprotein E knockout mice. Biochem Biophys Res Commun 377:1195–1198PubMedCrossRefGoogle Scholar
  22. 22.
    Cai J, Kang Z, Liu K, Liu W, Li R, Zhang JH, Luo X, Sun X (2009) Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Res 1256:129–137PubMedCrossRefGoogle Scholar
  23. 23.
    Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272PubMedCrossRefGoogle Scholar
  24. 24.
    Milani H, Lepri ER, Giordani F, Favero-Filho LA (1999) Magnesium chloride alone or in combination with diazepam fails to prevent hippocampal damage following transient forebrain ischemia. Braz J Med Biol Res 32:1285–1293PubMedCrossRefGoogle Scholar
  25. 25.
    Hua F, Ma J, Li Y, Ha T, Xia Y, Kelley J, Williams DL, Browder IW, Schweitzer JB, Li C (2006) The development of a novel mouse model of transient global cerebral ischemia. Neurosci Lett 400:69–74PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou ML, Zhu L, Wang J, Hang CH, Shi JX (2007) The inflammation in the gut after experimental subarachnoid hemorrhage. J Surg Res 137:103–108PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636PubMedCrossRefGoogle Scholar
  28. 28.
    Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190:255–266PubMedCrossRefGoogle Scholar
  29. 29.
    Chen F, Castranova V, Shi X, Demers LM (1999) New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem 45:7–17PubMedGoogle Scholar
  30. 30.
    Hang CH, Chen G, Shi JX, Zhang X, Li JS (2006) Cortical expression of nuclear factor kappaB after human brain contusion. Brain Res 1109:14–21PubMedCrossRefGoogle Scholar
  31. 31.
    Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr, Cerami A, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166:147–153PubMedGoogle Scholar
  32. 32.
    Church LD, Cook GP, McDermott MF (2008) Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol 4:34–42PubMedCrossRefGoogle Scholar
  33. 33.
    Dogan A, Rao AM, Baskaya MK, Rao VL, Rastl J, Donaldson D, Dempsey RJ (1997) Effects of ifenprodil, a polyamine site NMDA receptor antagonist, on reperfusion injury after transient focal cerebral ischemia. J Neurosurg 87:921–926PubMedCrossRefGoogle Scholar
  34. 34.
    Kumar A, Mittal R, Khanna HD, Basu S (2008) Free radical injury and blood-brain barrier permeability in hypoxic-ischemic encephalopathy. Pediatrics 122:722–727CrossRefGoogle Scholar
  35. 35.
    Kasai H (1997) Analysis of a form of oxidative DNA damage, 8-hydroxy-2’-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res 387:147–163PubMedCrossRefGoogle Scholar
  36. 36.
    Kaminsky DA, Mitchell J, Carroll N, James A, Soultanakis R, Janssen Y (1999) Nitrotyrosine formation in the airways and lung parenchyma of patients with asthma. J Allergy Clin Immunol 104:747–754PubMedCrossRefGoogle Scholar
  37. 37.
    Beckman JS, Crapo JD (1997) The role of nitric oxide in limiting gene transfer: parallels to viral host defenses. Am J Respir Cell Mol Biol 16:495–496PubMedGoogle Scholar
  38. 38.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516PubMedCrossRefGoogle Scholar
  39. 39.
    Maher P, Salgado KF, Zivin JA, Lapchak PA (2007) A novel approach to screening for new neuroprotective compounds for the treatment of stroke. Brain Res 1173:117–125PubMedCrossRefGoogle Scholar
  40. 40.
    Fukuda K, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S (2007) Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochem Biophys Res Commun 361:670–674PubMedCrossRefGoogle Scholar
  41. 41.
    Kajiya M, Sato K, Silva MJ, Ouhara K, Do PM, Shanmugam KT, Kawai T (2009) Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochem Biophys Res Commun 386:316–321PubMedCrossRefGoogle Scholar
  42. 42.
    Kajiya M, Silva MJ, Sato K, Ouhara K, Kawai T (2009) Hydrogen mediates suppression of colon inflammation induced by dextran sodium sulfate. Biochem Biophys Res Commun 386:11–15PubMedCrossRefGoogle Scholar
  43. 43.
    Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274:27339–27342PubMedCrossRefGoogle Scholar
  44. 44.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedCrossRefGoogle Scholar
  45. 45.
    Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182PubMedCrossRefGoogle Scholar
  46. 46.
    Olney JW, Ho OL, Rhee V, DeGubareff T (1973) Letter: neurotoxic effects of glutamate. N Engl J Med 289:1374–1375PubMedCrossRefGoogle Scholar
  47. 47.
    Ditsworth D, Priestley MA, Loepke AW, Ramamoorthy C, McCann J, Staple L, Kurth CD (2003) Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets. Anesthesiology 98:1119–1127PubMedCrossRefGoogle Scholar
  48. 48.
    Kuroda S, Siesjo BK (1997) Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci 4:199–212PubMedGoogle Scholar
  49. 49.
    Matchett GA, Fathali N, Hasegawa Y, Jadhav V, Ostrowski RP, Martin RD, Dorotta IR, Sun X, Zhang JH (2009) Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res 1259:90–97PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Li Shen
    • 1
  • Jun Wang
    • 1
  • Kun Liu
    • 1
  • Chunzhang Wang
    • 1
  • Changtian Wang
    • 1
  • Haiwei Wu
    • 1
  • Qiang Sun
    • 2
  • Xuejun Sun
    • 2
  • Hua Jing
    • 1
  1. 1.Department of Cardiothoracic Surgery, Jinling HospitalClinical Medicine School of Nanjing UniversityNanjingPeople’s Republic of China
  2. 2.Department of Diving Medicine, Faculty of Naval MedicineSecond Military Medical UniversityShanghaiPeople’s Republic of China

Personalised recommendations