Advertisement

Neurochemical Research

, Volume 36, Issue 5, pp 819–828 | Cite as

Neurodegenerative Effects of Recombinant HIV-1 Tat(1-86) are Associated with Inhibition of Microtubule Formation and Oxidative Stress-Related Reductions in Microtubule-Associated Protein-2(a,b)

  • Tracy R. Butler
  • Katherine J. Smith
  • Rachel L. Self
  • Brittany B. Braden
  • Mark A. PrendergastEmail author
Original Paper

Abstract

The human immunodeficiency virus 1 (HIV-1) protein Trans-activator of Transcription (Tat) is a nuclear regulatory protein that may contribute to the development of HIV-1 associated dementia by disrupting the neuronal cytoskeleton. The present studies examined effects of recombinant Tat(1-86; 1–100 nM) on microtubule-associated protein (MAP)-dependent and MAP-independent microtubule formation ex vivo and oxidative neuronal injury in rat organotypic hippocampal explants. Acute exposure to Tat(1-86) (≥1 nM) markedly reduced MAP-dependent and –independent microtubule formation ex vivo, as did vincristine sulfate (0.1–10 μM). Cytotoxicity, as measured by propidium iodide uptake, was observed in granule cells of the DG with exposure to 100 nM Tat(1-86) for 24 or 72 h, while significant reductions in MAP-2 immunoreactivity were observed in granule cells and pyramidal cells of the CA1 and CA3 regions at each timepoint. These effects were prevented by co-exposure to the soluble vitamin E analog Trolox (500 μM). Thus, effects of Tat(1-86) on the neuronal viability may be associated with direct interactions with microtubules and generation of oxidative stress.

Keywords

Acquired immune deficiency syndrome Neurotoxicity Trolox Tubulin 

Notes

Acknowledgments

The authors acknowledge the support of AA013561.

References

  1. 1.
    Adams SM, Aksenova MV, Aksenov MY et al (2010) ER-beta mediates 17 beta-estradiol attenuation of HIV-1 Tat-induced apoptotic signaling. Synapse 64(11):829–838PubMedCrossRefGoogle Scholar
  2. 2.
    Aksenov MY, Aksenov MV, Mactutus CF et al (2009) Attenuated neurotoxicity of the transactivation-defective HIV-1 Tat protein in hippocampal cultures. Exp Neurol 219:586–590PubMedCrossRefGoogle Scholar
  3. 3.
    Aksenov MY, Aksenova MV, Nath A et al (2006) Cocaine-mediated enhancement of Tat toxicity in rat hippocampal cell cultures: The role of oxidative stress and D1 dopamine receptor. Neurotoxicology 27:217–228PubMedCrossRefGoogle Scholar
  4. 4.
    Aksenov MY, Hasselrot U, Wu G et al (2003) Temporal relationships between HIV-1 Tat induced neuronal degeneration, OX-42 immunoreactivity, reactive astrocytosis, and protein oxidation in the rat striatum. Brain Res 987(1):1–9PubMedCrossRefGoogle Scholar
  5. 5.
    Allani PK, Sum T, Bhansali SG et al (2004) Comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Toxicol Appl Pharmacol 196:29–36PubMedCrossRefGoogle Scholar
  6. 6.
    Aprea S, Del Valle L, Mameli G et al (2006) Tubulin-mediated binding of human immunodeficiency virus-1 Tat to the cytoskeleton causes proteasomal-dependent degradation of microtubule-associated protein 2 and neuronal damage. J Neurosci 26:4054–4062PubMedCrossRefGoogle Scholar
  7. 7.
    Archibald SL, Masliah E, Fennema-Notestine C et al (2004) Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss. Arch Neurol 61:369–376PubMedCrossRefGoogle Scholar
  8. 8.
    Banks WA, Robinson SM, Nath A (2005) Permeability of the blood-brain barrier to HIV-1 Tat. Exp Neurol 193:218–227PubMedCrossRefGoogle Scholar
  9. 9.
    Banks WA, Freed EO, Wolf KM et al (2001) Transport of human immunodeficiency virus type 1 pseudoviruses across the blood–brain barrier: role of envelope proteins and adsorptive endocytosis. J Virol 75:4681–4691PubMedCrossRefGoogle Scholar
  10. 10.
    Battaglia PA, Zito S, Macchini A et al (2001) A Drosophila model of HIV-Tat related pathogenicity. J Cell Sci 114(Pt 15):2787–2794PubMedGoogle Scholar
  11. 11.
    Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22:9075–9086PubMedCrossRefGoogle Scholar
  12. 12.
    Bonavia R, Bajetto A, Barbero S et al (2001) HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons. Biochem Biophys Res Commun 288:301–308PubMedCrossRefGoogle Scholar
  13. 13.
    Bruce-Keller AJ, Barger SW, Moss NI et al (2001) Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J Neurochem 78:1315–1324PubMedCrossRefGoogle Scholar
  14. 14.
    Bruce-Keller AJ, Chauhan A, Dimayuga FO et al (2003) Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci 23:8417–8422PubMedGoogle Scholar
  15. 15.
    Chauhan A, Turchan J, Pocernich C et al (2003) Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. J Biol Chem 278:13512–13519PubMedCrossRefGoogle Scholar
  16. 16.
    Chen D, Wang M, Zhou S et al (2002) HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the proapoptotic Bcl-2 relative Bim. EMBO J 21:6801–6810PubMedCrossRefGoogle Scholar
  17. 17.
    de Mareuil J, Carre M, Barbier P et al (2005) HIV-1 Tat protein enhances microtubule polymerization. Retrovirology 2:5PubMedCrossRefGoogle Scholar
  18. 18.
    Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117PubMedCrossRefGoogle Scholar
  19. 19.
    Egele C, Barbier P, Didier P et al (2008) Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat. Retrovirology 5:62PubMedCrossRefGoogle Scholar
  20. 20.
    Epie N, Ammosova T, Sapir T et al (2005) HIV-1 Tat interacts with LIS1 protein. Retrovirology 2:6PubMedCrossRefGoogle Scholar
  21. 21.
    Eugenin EA, D’Aversa TG, Lopez L et al (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Martinez LF, Ivanov D, Gaynor RB (1997) Association of Tat with purified HIV-1 and HIV-2 transcription preinitiation complexes. J Biol Chem 272:6951–6958PubMedCrossRefGoogle Scholar
  23. 23.
    Giacca M (2005) HIV-1 Tat, apoptosis and the mitochondria: a tubulin link? Retrovirology 2:7PubMedCrossRefGoogle Scholar
  24. 24.
    Gil L, Martinez G, Gonzalez I et al (2003) Contribution to characterization of oxidative stress in HIV/AIDS patients. Pharmacol Res 47:217–224PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81PubMedCrossRefGoogle Scholar
  26. 26.
    Jordan A, Hadfield JA, Lawrence NJ et al (1998) Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev 18:259–296PubMedCrossRefGoogle Scholar
  27. 27.
    King JE, Eugenin EA, Buckner CM et al (2006) HIV tat and neurotoxicity. Microbes Infect 8:1347–1357PubMedCrossRefGoogle Scholar
  28. 28.
    Kruman II, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288PubMedCrossRefGoogle Scholar
  29. 29.
    Liu Y, Jones M, Hingtgen CM et al (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387PubMedCrossRefGoogle Scholar
  30. 30.
    Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499PubMedGoogle Scholar
  31. 31.
    Maragos WF, Tillman P, Jones M et al (2003) Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat. Neuroscience 117:43–53PubMedCrossRefGoogle Scholar
  32. 32.
    Mattson MP, Fu W, Waeq G et al (1997) Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8:2275–2281PubMedCrossRefGoogle Scholar
  33. 33.
    Mishra M, Vetrivel S, Siddappa NB et al (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: Significance of dicysteine C30C31 motif. Ann Neurol 63:366–376PubMedCrossRefGoogle Scholar
  34. 34.
    Mizuhashi S, Ikegaya Y, Matsuki N (2000) Cytotoxicity of tributyltin in rat hippocampal slice cultures. Neurosci Res 38:35–42PubMedCrossRefGoogle Scholar
  35. 35.
    Montine TJ, Amarnath V, Martin ME et al (1996) E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am J Pathol 148:89–93PubMedGoogle Scholar
  36. 36.
    Moore DJ, Masliah E, Rippeth JD et al (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20:879–887PubMedCrossRefGoogle Scholar
  37. 37.
    Mulholland PJ, Stepanyan TD, Self RL et al (2005) Corticosterone and dexamethasone potentiate cytotoxicity associated with oxygen-glucose deprivation in organotypic cerebellar slice cultures. Neuroscience 136:259–267PubMedCrossRefGoogle Scholar
  38. 38.
    Nath A, Psooy K, Martin C et al (1996) Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480PubMedGoogle Scholar
  39. 39.
    Neely MD, Sidell KR, Graham DG et al (1999) The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules and modifies cellular tubulin. J Neurochem 72:2323–2333PubMedCrossRefGoogle Scholar
  40. 40.
    Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Protoc 3:278–290CrossRefGoogle Scholar
  41. 41.
    Prendergast MA, Rogers DT, Mulholland PJ et al (2002) Neurotoxic effects of the human immunodeficiency virus type-1 transcription factor Tat require function of a polyamine sensitive-site on the N-methyl-D-aspartate receptor. Brain Res 954:300–307PubMedCrossRefGoogle Scholar
  42. 42.
    Prendergast MA, Self RL, Smith KJ et al (2007) Microtubule-associated targets in chlorpyrifos oxon hippocampal neurotoxicity. Neuroscience 146:330–339PubMedCrossRefGoogle Scholar
  43. 43.
    Price TO, Ercal N, Nakaoke R et al (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045:57–63PubMedCrossRefGoogle Scholar
  44. 44.
    Sa MJ, Madeira MD, Ruela C et al (2004) Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol 107:97–110PubMedCrossRefGoogle Scholar
  45. 45.
    Self RL, Mulholland PJ, Harris BR et al (2004) Cytotoxic effects of exposure to the human immunodeficiency virus type 1 protein Tat in the hippocampus are enhanced by prior ethanol treatment. Alcohol Clin Exp Res 28:1916–1924PubMedCrossRefGoogle Scholar
  46. 46.
    Self RL, Mulholland PJ, Nath A et al (2004) The human immunodeficiency virus type-1 transcription factor Tat produces elevations in intracellular Ca2 + that require function of an N-methyl-D-aspartate receptor polyamine-sensitive site. Brain Res 995:39–45PubMedCrossRefGoogle Scholar
  47. 47.
    Singer EJ, Valdes-Sueiras M, Commins D et al (2010) Neurologic presentations of AIDS. Neurol Clin 28:253–275PubMedCrossRefGoogle Scholar
  48. 48.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures in nervous tissue. J Neurosci Methods 37:173–182PubMedCrossRefGoogle Scholar
  49. 49.
    Toborek M, Lee YW, Pu H et al (2003) HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J Neurochem 84(1):169–179PubMedCrossRefGoogle Scholar
  50. 50.
    Turchan J, Pocernich CB, Gairola C et al (2003) Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 60:307–314PubMedGoogle Scholar
  51. 51.
    Wang LG, Liu XM, Kreis W et al (1999) The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 44:355–361PubMedCrossRefGoogle Scholar
  52. 52.
    Westendorp MO, Shatrov VA, Schulze-Osthoff K et al (1995) HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 14:546–554PubMedGoogle Scholar
  53. 53.
    Williams DW, Kondo S, Krzyzanowska A et al (2006) Local caspase acitivity directs engulfment of dendrites during pruning. Nat Neurosci 9:1234–1236PubMedCrossRefGoogle Scholar
  54. 54.
    Xu J, Ikez T (2009) The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era. Neuroimmune Pharmacol 4:200–212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tracy R. Butler
    • 1
  • Katherine J. Smith
    • 1
  • Rachel L. Self
    • 1
  • Brittany B. Braden
    • 1
  • Mark A. Prendergast
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of KentuckyLexingtonUSA

Personalised recommendations