Neurochemical Research

, Volume 36, Issue 5, pp 783–792 | Cite as

Human Umbilical Cord-Derived Schwann-Like Cell Transplantation Combined with Neurotrophin-3 Administration in Dyskinesia of Rats with Spinal Cord Injury

  • Guo Yan-Wu
  • Ke Yi-Quan
  • Li Ming
  • Cai Ying-Qian
  • Jiang Xiao-Dan
  • Zhang Shi-Zhong
  • Zhang Wang-Ming
  • Duan Chuan-Zhi
Original Paper

Abstract

Mesenchymal stem cells are capable of differentiating into Schwann-like cells. In this study, we induced human umbilical-cord mesenchymal stem cells (HUMSCs) in vitro into neurospheres constituted by neural stem-like cells, and further into cells bearing strong morphological, phenotypic and functional resemblances with Schwann-like cells. These HUMSC-derived Schwann-like cells, after grafting into the injured area of the rats’ spinal cord injury (SCI), showed a partial therapeutic effect in terms of improving the motor function. Neurotrophin-3 (NT-3) was reported to improve the local microenvironment of the grafted cells, and we, therefore, further tested the effect of Schwann-like cell grafting combined with NT-3 administration at the site of cell transplantation. The results showed that NT-3 administration significantly promoted the survival of the grafted cells in the host-injured area. Significant improvement in rats treated by Schwann-like cell grafting combined with NT-3 administration was demonstrated in the behavioral test as compared with that in animal models received the cell grafting only. These results suggest that transplantation of the Schwann-like cells combined with NT-3 administration may represent a new strategy of stem cell therapy for spinal cord injury.

Keywords

Human umbilical cord mesenchymal stem cells Schwann-like cells Cell differentiation Cell transplantation Spinal cord injury 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 30901546/H0912) and Natural Science Foundation of Guangdong (No. 9451051501002508).

References

  1. 1.
    Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599PubMedCrossRefGoogle Scholar
  2. 2.
    Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19(1):117–130PubMedCrossRefGoogle Scholar
  3. 3.
    Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang HT, Fan J, Cai YQ, Zhao SJ, Xue S, Lin JH, Jiang XD, Xu RX (2010) Human Wharton’s jelly cells can be induced to differentiate into growth factor-secreting oligodendrocyte progenitor-like cells. Differentiation 79(1):15–20PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao L, Weir MD, Xu HH (2010) Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials 31(14):3848–3857PubMedCrossRefGoogle Scholar
  6. 6.
    Montesinos JJ, Flores-Figueroa E, Castillo-Medina S, Flores-Guzmán P, Hernández-Estévez E, Fajardo-Orduña G, Orozco S, Mayani H (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11(2):163–176PubMedCrossRefGoogle Scholar
  7. 7.
    Kunter U, Rong S, Djuric Z, Boor P, Müller-Newen G, Yu D, Floege J (2006) Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. J Am Soc Nephrol 17(8):2202–2212PubMedCrossRefGoogle Scholar
  8. 8.
    Brundin P, Barbin G, Isacson O, Mallat M, Chamak B, Prochiantz A, Gage FH, Björklund A (1985) Survival of intracerebrally grafted rat dopamine neurons previously cultured in vitro. Neurosci Lett 61(1–2):79–84PubMedCrossRefGoogle Scholar
  9. 9.
    Nikkhah G, Olsson M, Eberhard J, Bentlage C, Cunningham MG, Björklund A (1994) A microtransplantation approach for cell suspension grafting in the rat Parkinson model. A detailed account of the methodology. Neuroscience 63(1):57–72PubMedCrossRefGoogle Scholar
  10. 10.
    Lavail MM, Nishikawa S, Duncan JL, Yang H, Matthes MT, Yasumura D, Vollrath D, Overbeek PA, Ash JD, Robinson ML (2008) Sustained delivery of NT-3 from lens fiber cells in transgenic mice reveals specificity of neuroprotection in retinal degenerations. J Comp Neurol 511(6):724–735PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang S, Zou Z, Jiang X, Xu R, Zhang W, Zhou Y, Ke Y (2008) The therapeutic effects of tyrosine hydroxylase gene transfected hematopoetic stem cells in a rat model of Parkinson’s disease. Cell Mol Neurobiol 28:529–543PubMedCrossRefGoogle Scholar
  12. 12.
    Zhu R, Xu R, Jiang X, Cai Y, Zou Y, Du M, Qin L (2007) Expression profile of cancer-related genes in human adult bone marrow-derived neural stemlike cells highlights the need for tumorigenicity study. J Neurosci Res 85:3064–3070PubMedCrossRefGoogle Scholar
  13. 13.
    Lee MW, Moon YJ, Yang MS, Kim SK, Jang IK, Eom YW, Park JS, Kim HC, Song KY, Park SC, Lim HS, Kim YJ (2007) Neural differentiation of novel multipotent progenitor cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 358(2):637–643PubMedCrossRefGoogle Scholar
  14. 14.
    Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274PubMedCrossRefGoogle Scholar
  15. 15.
    Nguyen TH, Khakhoulina T, Simmons A, Morel P, Trono D (2005) A simple and highly effective method for the stable transduction of uncultured porcine hepatocytes using lentiviral vector. Cell Transplant 14(7):489–496PubMedCrossRefGoogle Scholar
  16. 16.
    Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W (1996) MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma 13(7):343–359PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang HT, Cheng HY, Zhang L, Fan J, Chen YZ, Jiang XD, Xu RX (2009) Umbilical cord blood cell-derived neurospheres differentiate into Schwann-like cells. Neuroreport 20(4):354–359PubMedCrossRefGoogle Scholar
  18. 18.
    Wakao S, Hayashi T, Kitada M, Kohama M, Matsue D, Teramoto N, Ose T, Itokazu Y, Koshino K, Watabe H, Iida H, Takamoto T, Tabata Y, Dezawa M (2010) Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Exp Neurol 223(2):537–547PubMedCrossRefGoogle Scholar
  19. 19.
    Lin W, Chen X, Wang X, Liu J, Gu X (2008) Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim 44(1–2):31–40PubMedCrossRefGoogle Scholar
  20. 20.
    Cho MS, Hwang DY, Kim DW (2008) Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc 3(12):1888–1894PubMedCrossRefGoogle Scholar
  21. 21.
    Andereggen L, Meyer M, Guzman R, Ducray AD, Widmer HR (2009) Effects of GDNF pretreatment on function and survival of transplanted fetal ventral mesencephalic cells in the 6-OHDA rat model of Parkinson’s disease. Brain Res 1276:39–49PubMedCrossRefGoogle Scholar
  22. 22.
    Kuh SU, Cho YE, Yoon DH, Kim KN, Ha Y (2005) Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Acta Neurochir (Wien) 147(9):985–992 (discussion 992)CrossRefGoogle Scholar
  23. 23.
    Yu Y, Gu S, Huang H, Wen T (2007) Combination of bFGF, heparin and laminin induce the generation of dopaminergic neurons from rat neural stem cells both in vitro and in vivo. J Neurol Sci 255(1–2):81–86PubMedCrossRefGoogle Scholar
  24. 24.
    Bernd P (2008) The role of neurotrophins during early development. Gene Exp 14(4):241–250CrossRefGoogle Scholar
  25. 25.
    Chalazonitis A (2004) Neurotrophin-3 in the development of the enteric nervous system. Prog Brain Res 146:243–263PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Guo Yan-Wu
    • 1
    • 2
  • Ke Yi-Quan
    • 1
    • 2
  • Li Ming
    • 1
    • 2
  • Cai Ying-Qian
    • 1
    • 2
  • Jiang Xiao-Dan
    • 1
    • 2
  • Zhang Shi-Zhong
    • 1
    • 2
  • Zhang Wang-Ming
    • 1
    • 2
  • Duan Chuan-Zhi
    • 1
    • 2
  1. 1.Department of Neurosurgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
  2. 2.Institute of Neurosurgery, Key Laboratory on Brain Function Repair and Regeneration of GuangdongSouthern Medical UniversityGuangzhouChina

Personalised recommendations