Neurochemical Research

, Volume 36, Issue 3, pp 476–486 | Cite as

Aminoguanidine Administration Ameliorates Hippocampal Damage After Middle Cerebral Artery Occlusion in Rat

  • Viera Danielisova
  • Jozef Burda
  • Miroslava Nemethova
  • Miroslav Gottlieb
Original Paper

Abstract

The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.

Keywords

Cerebral ischemia Hippocampus Aminoguanidine iNOS 

References

  1. 1.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69CrossRefPubMedGoogle Scholar
  2. 2.
    Sasaki T, Hamada J, Shibata M, Araki N, Fukuuchi Y (2001) Inhibition of nitric oxide production during global ischemia ameliorates ischemic damage of pyramidal neurons in the hippocampus. Keio J Med 50:182–187PubMedGoogle Scholar
  3. 3.
    Burda J, Hrehorovska M, Bonilla LG et al (2003) Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28:1213–1219CrossRefPubMedGoogle Scholar
  4. 4.
    Burda J, Matiasova M, Gottlieb M et al (2005) Evidence for a role of second pathophysiological stress in prevention of delayed neuronal death in the hippocampal CA1 region. Neurochem Res 30:1397–1405CrossRefPubMedGoogle Scholar
  5. 5.
    Danielisova V, Nemethova M, Gottlieb M, Burda J (2005) Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition. Neurochem Res 30:559–565CrossRefPubMedGoogle Scholar
  6. 6.
    Butler TL, Kassed CA, Sanberg PR, Willing AE, Pennypacker KR (2002) Neurodegeneration in the rat hippocampus and striatum after middle cerebral artery occlusion. Brain Res 929:252–260CrossRefPubMedGoogle Scholar
  7. 7.
    Corsani L, Bizzoco E, Pedata F et al (2008) Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Exp Neurol 211:433–440CrossRefPubMedGoogle Scholar
  8. 8.
    Sugimoto K, Iadecola C (2002) Effects of aminoguanidine on cerebral ischemia in mice: comparison between mice with and without inducible nitric oxide synthase gene. Neurosci Lett 331:25–28CrossRefPubMedGoogle Scholar
  9. 9.
    Cash D, Beech JS, Rayne RC, Bath PM, Meldrum BS, Williams SC (2001) Neuroprotective effect of aminoguanidine on transient focal ischaemia in the rat brain. Brain Res 905:91–103CrossRefPubMedGoogle Scholar
  10. 10.
    Nagayama M, Zhang F, Iadecola C (1998) Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab 18:1107–1113CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang F, Iadecola C (1998) Temporal characteristics of the protective effect of aminoguanidine on cerebral ischemic damage. Brain Res 802:104–110CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang F, Casey RM, Ross ME, Iadecola C (1996) Aminoguanidine ameliorates and L-arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke 27:317–323PubMedGoogle Scholar
  13. 13.
    Danielisova V, Nemethova M, Burda J (2004) The protective effect of aminoguanidine on cerebral ischemic damage in the rat brain. Physiol Res 53:533–540PubMedGoogle Scholar
  14. 14.
    Louin G, Marchand-Verrecchia C, Palmier B, Plotkine M, Jafarian-Tehrani M (2006) Selective inhibition of inducible nitric oxide synthase reduces neurological deficit but not cerebral edema following traumatic brain injury. Neuropharmacology 50:182–190CrossRefPubMedGoogle Scholar
  15. 15.
    Vakili A, Hosseinzadeh F, Sadogh T (2007) Effect of aminoguanidine on post-ischemic brain edema in transient model of focal cerebral ischemia. Brain Res 1170:97–102CrossRefPubMedGoogle Scholar
  16. 16.
    Lu J, Moochhala S, Shirhan M (2003) Neuroprotection by aminoguanidine after lateral fluid-percussive brain injury in rats: a combined magnetic resonance imaging, histopathologic and functional study. Neuropharmacology 44:253–263CrossRefPubMedGoogle Scholar
  17. 17.
    Dingman A, Lee SY, Derugin N, Wendland MF, Vexler ZS (2006) Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia. J Neurochem 96:1467–1479CrossRefPubMedGoogle Scholar
  18. 18.
    Duckworth EA, Butler TL, De Mesquita D et al (2005) Temporary focal ischemia in the mouse: technical aspects and patterns of Fluoro-Jade evident neurodegeneration. Brain Res 1042:29–36CrossRefPubMedGoogle Scholar
  19. 19.
    Davoli MA, Fourtounis J, Tam J et al (2002) Immunohistochemical and biochemical assessment of caspase-3 activation and DNA fragmentation following transient focal ischemia in the rat. Neuroscience 115:125–136CrossRefPubMedGoogle Scholar
  20. 20.
    Sugawara T, Lewen A, Noshita N, Gasche Y, Chan PH (2002) Effects of global ischemia duration on neuronal, astroglial, oligodendroglial, and microglial reactions in the vulnerable hippocampal CA1 subregion in rats. J Neurotrauma 19:85–98CrossRefPubMedGoogle Scholar
  21. 21.
    Benedek A, Moricz K, Juranyi Z et al (2006) Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats. Brain Res 1116:159–165CrossRefPubMedGoogle Scholar
  22. 22.
    Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179:1–8CrossRefPubMedGoogle Scholar
  23. 23.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91PubMedGoogle Scholar
  24. 24.
    Bederson JB, Pitts LH, Germano SM et al (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304–1308PubMedGoogle Scholar
  25. 25.
    Swanson RA, Morton MT, Tsao-Wu G et al (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293PubMedGoogle Scholar
  26. 26.
    Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130CrossRefPubMedGoogle Scholar
  27. 27.
    Takizawa S, Fukuyama N, Hirabayashi H, Nakazawa H, Shinohara Y (1999) Dynamics of nitrotyrosine formation and decay in rat brain during focal ischemia-reperfusion. J Cereb Blood Flow Metab 19:667–672CrossRefPubMedGoogle Scholar
  28. 28.
    Cockroft KM, Meistrell M, Zimmerman GA et al (1996) Cerebroprotective effects of aminoguanidine in a rodent model of stroke. Stroke 27:1393–1398PubMedGoogle Scholar
  29. 29.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  30. 30.
    Murphy S, Gibson CL (2007) Nitric oxide, ischaemia and brain inflammation. Biochem Soc Trans 35:1133–1137CrossRefPubMedGoogle Scholar
  31. 31.
    Ivanova S, Botchkina GI, Al-Abed Y et al (1998) Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J Exp Med 188:327–340CrossRefPubMedGoogle Scholar
  32. 32.
    Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VA, Baker G (2006) Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 1122:184–190CrossRefPubMedGoogle Scholar
  33. 33.
    Giardino I, Fard AK, Hatchell DL, Brownlee M (1998) Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 47:1114–1120CrossRefPubMedGoogle Scholar
  34. 34.
    Yildiz G, Demiryurek AT, Sahin-Erdemli I, Kanzik I (1998) Comparison of antioxidant activities of aminoguanidine, methylguanidine and guanidine by luminol-enhanced chemiluminescence. Br J Pharmacol 124:905–910CrossRefPubMedGoogle Scholar
  35. 35.
    Sun M, Zhao Y, Gu Y, Xu C (2010) Neuroprotective actions of aminoguanidine involve reduced the activation of calpain and caspase-3 in a rat model of stroke. Neurochem Int 56:634–641CrossRefPubMedGoogle Scholar
  36. 36.
    Di F, Yan-Ting G, Hui L et al (2008) Role of aminoguanidine in brain protection in surgical brain injury in rat. Neurosci Lett 448:204–207CrossRefPubMedGoogle Scholar
  37. 37.
    Nilsson BO (1999) Biological effects of aminoguanidine: an update. Inflamm Res 48:509–515CrossRefPubMedGoogle Scholar
  38. 38.
    Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefPubMedGoogle Scholar
  39. 39.
    Jin K, Mao XO, Simon RP, Greenberg DA (2001) Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci 16:49–56CrossRefPubMedGoogle Scholar
  40. 40.
    Jin K, Sun Y, Xie L et al (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Viera Danielisova
    • 1
  • Jozef Burda
    • 1
  • Miroslava Nemethova
    • 1
  • Miroslav Gottlieb
    • 1
  1. 1.Department of NeurochemistryInstitute of Neurobiology, Slovak Academy of SciencesKošiceSlovak Republic

Personalised recommendations