Neurochemical Research

, Volume 36, Issue 9, pp 1623–1635

Stem Cell Glycolipids

Original Paper

Abstract

Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells.

Keywords

Cell surface microdomain Ganglioside Glycoconjugate Glycosphingolipid Marker Stem cell 

References

  1. 1.
    Yu RK, Yanagisawa M, Ariga T (2007) Glycosphingolipid structures. In: Kamerling JP (ed) Comprehensive Glycoscience. Elsevier, Oxford, pp 73–122Google Scholar
  2. 2.
    Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50 Suppl:S440–445Google Scholar
  3. 3.
    Yu RK, Bieberich E, Xia T, Zeng G (2004) Regulation of ganglioside biosynthesis in the nervous system. J Lipid Res 45:783–793PubMedGoogle Scholar
  4. 4.
    Hakomori S (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 10:16–24PubMedGoogle Scholar
  5. 5.
    Ledeen RW, Wu G (2008) Nuclear sphingolipids: metabolism and signaling. J Lipid Res 49:1176–1186PubMedGoogle Scholar
  6. 6.
    Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225PubMedGoogle Scholar
  7. 7.
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedGoogle Scholar
  8. 8.
    Hakomori S (2002) Inaugural article: the glycosynapse. Proc Natl Acad Sci USA 99:225–232Google Scholar
  9. 9.
    Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, Kabayama K, Sekimoto J, Suzuki S, Takaiwa K, Kimitsuki T, Matsumoto N, Komune S, Kamei D, Saito M, Fujiwara M, Iwasaki K, Inokuchi J (2009) Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci USA 106:9483–9488PubMedGoogle Scholar
  10. 10.
    Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K, Furukawa K (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci USA 106:22405–22410PubMedGoogle Scholar
  11. 11.
    Furukawa K, Takamiya K, Okada M, Inoue M, Fukumoto S, Furukawa K (2001) Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim Biophys Acta 1525:1–12PubMedGoogle Scholar
  12. 12.
    Proia RL (2003) Glycosphingolipid functions: insights from engineered mouse models. Philos Trans R Soc Lond B Biol Sci 358:879–883PubMedGoogle Scholar
  13. 13.
    Kaida K, Ariga T, Yu RK (2009) Antiganglioside antibodies and their pathophysiological effects on Guillain-Barré syndrome and related disorders–a review. Glycobiology 19:676–692PubMedGoogle Scholar
  14. 14.
    Futerman AH, van Meer G (2004) The cell biology of lysosomal storage disorders. Nat Rev Mol Cell Biol 5:554–565PubMedGoogle Scholar
  15. 15.
    Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229PubMedGoogle Scholar
  16. 16.
    Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. J Lipid Res 49:1157–1175PubMedGoogle Scholar
  17. 17.
    Bernardo A, Harrison FE, McCord M, Zhao J, Bruchey A, Davies SS, Jackson Roberts L, 2nd, Mathews PM, Matsuoka Y, Ariga T, Yu RK, Thompson R, McDonald MP (2009) Elimination of GD3 synthase improves memory and reduces amyloid-β plaque load in transgenic mice. Neurobiol Aging 30:1777–1791Google Scholar
  18. 18.
    Matsuzaki K, Kato K, Yanagisawa K (2010) Aβ polymerization through interaction with membrane gangliosides. Biochim Biophys Acta 1801:868–877PubMedGoogle Scholar
  19. 19.
    Kawakami Y, Nakamura K, Kojima H, Suzuki M, Inagaki F, Suzuki A, Ikuta J, Uchida A, Murata Y, Tamai Y (1996) A novel fucosyltetrahexosylceramide in plerocercoids of the parasite Spirometra erinacei. Eur J Biochem 239:905–911PubMedGoogle Scholar
  20. 20.
    Hada N (2006) Syntheses and biological activities of glycosphingolipids from invertebrate species. Trends Glycosci Glycotechnol 18:383–399Google Scholar
  21. 21.
    Nakamura K, Inagaki F, Tamai Y (1988) A novel ganglioside in dogfish brain. Occurrence of a trisialoganglioside with a sialic acid linked to N-acetylgalactosamine. J Biol Chem 263:9896–9900PubMedGoogle Scholar
  22. 22.
    Yu RK, Macala LJ, Taki T, Weinfield HM, Yu FS (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem 50:1825–1829PubMedGoogle Scholar
  23. 23.
    Bouvier JD, Seyfried TN (1989) Ganglioside composition of normal and mutant mouse embryos. J Neurochem 52:460–466PubMedGoogle Scholar
  24. 24.
    Yu RK (1994) Development regulation of ganglioside metabolism. Prog Brain Res 101:31–44PubMedGoogle Scholar
  25. 25.
    Ngamukote S, Yanagisawa M, Ariga T, Ando S, Yu RK (2007) Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J Neurochem 103:2327–2341PubMedGoogle Scholar
  26. 26.
    Ishii A, Ikeda T, Hitoshi S, Fujimoto I, Torii T, Sakuma K, Nakakita S, Hase S, Ikenaka K (2007) Developmental changes in the expression of glycogenes and the content of N-glycans in the mouse cerebral cortex. Glycobiology 17:261–276PubMedGoogle Scholar
  27. 27.
    Yu RK, Ariga T, Yanagisawa M, Zeng G (2008) Gangliosides in the nervous system: Biosynthesis and degradation. In: Fraser-Reid B, Tatsuka K, Thiem J (eds) Glycoscience. Springer, Berlin, pp 1671–1695Google Scholar
  28. 28.
    Suzuki Y, Yanagisawa M, Ariga T, Yu RK (2011) Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J Neurochem. in pressGoogle Scholar
  29. 29.
    Yanagisawa M, Yu RK (2007) The expression and functions of glycoconjugates in neural stem cells. Glycobiology 17:57R–74RPubMedGoogle Scholar
  30. 30.
    Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  31. 31.
    Muramatsu T, Muramatsu H (2004) Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J 21:41–45PubMedGoogle Scholar
  32. 32.
    Wright AJ, Andrews PW (2009) Surface marker antigens in the characterization of human embryonic stem cells. Stem Cell Res 3:3–11Google Scholar
  33. 33.
    Solter D, Knowles BB (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 75:5565–5569PubMedGoogle Scholar
  34. 34.
    Gooi HC, Feizi T, Kapadia A, Knowles BB, Solter D, Evans MJ (1981) Stage-specific embryonic antigen involves α 1 goes to 3 fucosylated type 2 blood group chains. Nature 292:156–158PubMedGoogle Scholar
  35. 35.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedGoogle Scholar
  36. 36.
    Cui L, Johkura K, Yue F, Ogiwara N, Okouchi Y, Asanuma K, Sasaki K (2004) Spatial distribution and initial changes of SSEA-1 and other cell adhesion-related molecules on mouse embryonic stem cells before and during differentiation. J Histochem Cytochem 52:1447–1457PubMedGoogle Scholar
  37. 37.
    Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848PubMedGoogle Scholar
  38. 38.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedGoogle Scholar
  39. 39.
    Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D (1983) Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2:2355–2361PubMedGoogle Scholar
  40. 40.
    Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258PubMedGoogle Scholar
  41. 41.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  42. 42.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedGoogle Scholar
  43. 43.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920PubMedGoogle Scholar
  44. 44.
    Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia 20:857–869PubMedGoogle Scholar
  45. 45.
    Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4 + SSEA-4 + Oct-4 + very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303PubMedGoogle Scholar
  46. 46.
    De Coppi P, Bartsch G Jr, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106PubMedGoogle Scholar
  47. 47.
    Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, Shigemoto T, Nabeshima Y, Nakahata T, Nabeshima YI, Fujiyoshi Y, Dezawa M (2010) Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 107:8639–8643PubMedGoogle Scholar
  48. 48.
    Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731PubMedGoogle Scholar
  49. 49.
    Kimber SJ, Brown DG, Pahlsson P, Nilsson B (1993) Carbohydrate antigen expression in murine embryonic stem cells and embryos. II. Sialylated antigens and glycolipid analysis. Histochem J 25:628–641PubMedGoogle Scholar
  50. 50.
    Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, Proia RL (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147PubMedGoogle Scholar
  51. 51.
    Kwak DH, Yu K, Kim SM, Lee DH, Kim SM, Jung JU, Seo JW, Kim N, Lee S, Jung KY, You HK, Kim HA, Choo YK (2006) Dynamic changes of gangliosides expression during the differentiation of embryonic and mesenchymal stem cells into neural cells. Exp Mol Med 38:668–676PubMedGoogle Scholar
  52. 52.
    Lee DH, Koo DB, Ko K, Ko K, Kim SM, Jung JU, Ryu JS, Jin JW, Yang HJ, Do SI, Jung KY, Choo YK (2007) Effects of daunorubicin on ganglioside expression and neuronal differentiation of mouse embryonic stem cells. Biochem Biophys Res Commun 362:313–318PubMedGoogle Scholar
  53. 53.
    Jung JU, Ko K, Lee DH, Ko K, Chang KT, Choo YK (2009) The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 41:935–945PubMedGoogle Scholar
  54. 54.
    Fenderson BA, Zehavi U, Hakomori S (1984) A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med 160:1591–1596PubMedGoogle Scholar
  55. 55.
    Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S (1989) Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem 264:9476–9484PubMedGoogle Scholar
  56. 56.
    Kudo T, Kaneko M, Iwasaki H, Togayachi A, Nishihara S, Abe K, Narimatsu H (2004) Normal embryonic and germ cell development in mice lacking α 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1. Mol Cell Biol 24:4221–4228PubMedGoogle Scholar
  57. 57.
    Klassen H, Schwartz MR, Bailey AH, Young MJ (2001) Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neurosci Lett 312:180–182PubMedGoogle Scholar
  58. 58.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716PubMedGoogle Scholar
  59. 59.
    Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875PubMedGoogle Scholar
  60. 60.
    Yanagisawa M, Taga T, Nakamura K, Ariga T, Yu RK (2005) Characterization of glycoconjugate antigens in mouse embryonic neural precursor cells. J Neurochem 95:1311–1320PubMedGoogle Scholar
  61. 61.
    Piao JH, Odeberg J, Samuelsson EB, Kjaeldgaard A, Falci S, Seiger A, Sundstrom E, Akesson E (2006) Cellular composition of long-term human spinal cord- and forebrain-derived neurosphere cultures. J Neurosci Res 84:471–482PubMedGoogle Scholar
  62. 62.
    Yanagisawa M, Nakamura K, Taga T (2004) Roles of lipid rafts in integrin-dependent adhesion and gp130 signalling pathway in mouse embryonic neural precursor cells. Genes Cells 9:801–809PubMedGoogle Scholar
  63. 63.
    Nakatani Y, Yanagisawa M, Suzuki Y, Yu RK (2010) Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology 20:78–86PubMedGoogle Scholar
  64. 64.
    Seyfried TN, Yu RK (1985) Ganglioside GD3: structure, cellular distribution, and possible function. Mol Cell Biochem 68:3–10PubMedGoogle Scholar
  65. 65.
    Irvine RA, Seyfried TN (1994) Phylogenetic conservation of ganglioside GD3 expression during early vertebrate ontogeny. Comp Biochem Physiol B Biochem Mol Biol 109:603–612PubMedGoogle Scholar
  66. 66.
    Birkle S, Ren S, Slominski A, Zeng G, Gao L, Yu RK (1999) Down-regulation of the expression of O-acetyl-GD3 by the O-acetylesterase cDNA in hamster melanoma cells: effects on cellular proliferation, differentiation, and melanogenesis. J Neurochem 72:954–961PubMedGoogle Scholar
  67. 67.
    Birkle S, Gao L, Zeng G, Yu RK (2000) Down-regulation of GD3 ganglioside and its O-acetylated derivative by stable transfection with antisense vector against GD3-synthase gene expression in hamster melanoma cells: effects on cellular growth, melanogenesis, and dendricity. J Neurochem 74:547–554PubMedGoogle Scholar
  68. 68.
    Goldman JE, Hirano M, Yu RK, Seyfried TN (1984) GD3 ganglioside is a glycolipid characteristic of immature neuroectodermal cells. J Neuroimmunol 7:179–192PubMedGoogle Scholar
  69. 69.
    Cammer W, Zhang H (1996) Ganglioside GD3 in radial glia and astrocytes in situ in brains of young and adult mice. J Neurosci Res 46:18–23PubMedGoogle Scholar
  70. 70.
    Maric D, Maric I, Chang YH, Barker JL (2003) Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J Neurosci 23:240–251PubMedGoogle Scholar
  71. 71.
    Androutsellis-Theotokis A, Walbridge S, Park DM, Lonser RR, McKay RD (2010) Cholera toxin regulates a signaling pathway critical for the expansion of neural stem cell cultures from the fetal and adult rodent brains. PLoS One 5:e10841PubMedGoogle Scholar
  72. 72.
    Campos LS, Decker L, Taylor V, Skarnes W (2006) Notch, epidermal growth factor receptor, and β1-integrin pathways are coordinated in neural stem cells. J Biol Chem 281:5300–5309PubMedGoogle Scholar
  73. 73.
    Yanagisawa M, Nakamura K, Taga T (2005) Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells. J Biochem 138:285–291PubMedGoogle Scholar
  74. 74.
    Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, Martin-Villalba A, Jager R, Schorle H, Kenzelmann M, Bonrouhi M, Wiegandt H, Grone HJ (2005) Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA 102:12459–12464PubMedGoogle Scholar
  75. 75.
    Ryu JS, Ko K, Lee JW, Park SB, Byun SJ, Jeong EJ, Ko K, Choo YK (2009) Gangliosides are involved in neural differentiation of human dental pulp-derived stem cells. Biochem Biophys Res Commun 387:266–271PubMedGoogle Scholar
  76. 76.
    Jin HJ, Nam HY, Bae YK, Kim SY, Im IR, Oh W, Yang YS, Choi SJ, Kim SW (2010) GD2 expression is closely associated with neuronal differentiation of human umbilical cord blood-derived mesenchymal stem cells. Cell Mol Life Sci 67:1845–1858PubMedGoogle Scholar
  77. 77.
    Yu RK, Yanagisawa M (2007) Glycosignaling in neural stem cells: involvement of glycoconjugates in signal transduction modulating the neural stem cell fate. J Neurochem 1:39–46 103 SupplGoogle Scholar
  78. 78.
    Yanagisawa M, Ariga T, Yu RK (2006) Cholera toxin B subunit binding does not correlate with GM1 expression: a study using mouse embryonic neural precursor cells. Glycobiology 16:19G–22GPubMedGoogle Scholar
  79. 79.
    Nagatsuka Y, Kasama T, Ohashi Y, Uzawa J, Ono Y, Shimizu K, Hirabayashi Y (2001) A new phosphoglycerolipid, ‘phosphatidylglucose’, found in human cord red cells by multi-reactive monoclonal anti-i cold agglutinin, mAb GL-1/GL-2. FEBS Lett 497:141–147PubMedGoogle Scholar
  80. 80.
    Nagatsuka Y, Hara-Yokoyama M, Kasama T, Takekoshi M, Maeda F, Ihara S, Fujiwara S, Ohshima E, Ishii K, Kobayashi T, Shimizu K, Hirabayashi Y (2003) Carbohydrate-dependent signaling from the phosphatidylglucoside-based microdomain induces granulocytic differentiation of HL60 cells. Proc Natl Acad Sci USA 100:7454–7459PubMedGoogle Scholar
  81. 81.
    Kinoshita MO, Furuya S, Ito S, Shinoda Y, Yamazaki Y, Greimel P, Ito Y, Hashikawa T, Machida T, Nagatsuka Y, Hirabayashi Y (2009) Lipid rafts enriched in phosphatidylglucoside direct astroglial differentiation by regulating tyrosine kinase activity of epidermal growth factor receptors. Biochem J 419:565–575PubMedGoogle Scholar
  82. 82.
    Kim SM, Jung JU, Ryu JS, Jin JW, Yang HJ, Ko K, You HK, Jung KY, Choo YK (2008) Effects of gangliosides on the differentiation of human mesenchymal stem cells into osteoblasts by modulating epidermal growth factor receptors. Biochem Biophys Res Commun 371:866–871PubMedGoogle Scholar
  83. 83.
    Lee SH, Ryu JS, Lee JW, Kwak DH, Ko K, Choo YK (2010) Comparison of ganglioside expression between human adipose- and dental pulp-derived stem cell differentiation into osteoblasts. Arch Pharm Res 33:585–591PubMedGoogle Scholar
  84. 84.
    Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109:4245–4248PubMedGoogle Scholar
  85. 85.
    Freund D, Fonseca AV, Janich P, Bornhauser M, Corbeil D (2010) Differential expression of biofunctional GM1 and GM3 gangliosides within the plastic-adherent multipotent mesenchymal stromal cell population. Cytotherapy 12:131–142PubMedGoogle Scholar
  86. 86.
    Xu J, Liao W, Gu D, Liang L, Liu M, Du W, Liu P, Zhang L, Lu S, Dong C, Zhou B, Han Z (2009) Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cell Physiol Biochem 23:415–424PubMedGoogle Scholar
  87. 87.
    Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109:1743–1751PubMedGoogle Scholar
  88. 88.
    Trubiani O, Zalzal SF, Paganelli R, Marchisio M, Giancola R, Pizzicannella J, Buhring HJ, Piattelli M, Caputi S, Nanci A (2010) Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J Cell Physiol 225:123–131PubMedGoogle Scholar
  89. 89.
    Dan YY, Riehle KJ, Lazaro C, Teoh N, Haque J, Campbell JS, Fausto N (2006) Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 103:9912–9917PubMedGoogle Scholar
  90. 90.
    Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H, Nakauchi H (2006) Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 25:3515–3523PubMedGoogle Scholar
  91. 91.
    Chae HD, Lee KE, Williams DA, Gu Y (2008) Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood 111:2597–2605PubMedGoogle Scholar
  92. 92.
    Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H (2009) TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256PubMedGoogle Scholar
  93. 93.
    Yanagisawa M, Ariga T, Yu RK (2006) Fucosyl-GM1 expression and amyloid-β protein accumulation in PC12 cells. J Neurosci Res 84:1343–1349PubMedGoogle Scholar
  94. 94.
    Barraud P, Stott S, Mollgard K, Parmar M, Bjorklund A (2007) In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. J Neurosci Res 85:250–259PubMedGoogle Scholar
  95. 95.
    Seyfried TN (1987) Ganglioside abnormalities associated with failed neural differentiation in a T-locus mutant mouse embryo. Dev Biol 123:286–291PubMedGoogle Scholar
  96. 96.
    Liour SS, Dinkins MB, Su CY, Yu RK (2005) Spatiotemporal expression of GM1 in murine medial pallial neural progenitor cells. J Comp Neurol 491:330–338PubMedGoogle Scholar
  97. 97.
    Raff MC, Miller RH, Noble M (1983) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396PubMedGoogle Scholar
  98. 98.
    Kasai N, Yu RK (1983) The monoclonal antibody A2B5 is specific to ganglioside GQ1c. Brain Res 277:155–158PubMedGoogle Scholar
  99. 99.
    Saito M, Kitamura H, Sugiyama K (2001) The specificity of monoclonal antibody A2B5 to c-series gangliosides. J Neurochem 78:64–74PubMedGoogle Scholar
  100. 100.
    Farrer RG, Quarles RH (1999) GT3 and its O-acetylated derivative are the principal A2B5-reactive gangliosides in cultured O2A lineage cells and are down-regulated along with O-acetyl GD3 during differentiation to oligodendrocytes. J Neurosci Res 57:371–380PubMedGoogle Scholar
  101. 101.
    Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46PubMedGoogle Scholar
  102. 102.
    Cizkova D, Cizek M, Nagyova M, Slovinska L, Novotna I, Jergova S, Radonak J, Hlucilova J, Vanicky I (2009) Enrichment of rat oligodendrocyte progenitor cells by magnetic cell sorting. J Neurosci Methods 184:88–94PubMedGoogle Scholar
  103. 103.
    Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, Kang J, Assanah M, McKhann GM, Sisti MB, McCormick PC, Canoll P, Bruce JN (2008) Identification of A2B5+ CD133-tumor-initiating cells in adult human gliomas. Neurosurgery 62:505–514PubMedGoogle Scholar
  104. 104.
    Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik L, Figarella-Branger D (2010) A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol 20:211–221PubMedGoogle Scholar
  105. 105.
    Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452PubMedGoogle Scholar
  106. 106.
    Mao XG, Zhang X, Xue XY, Guo G, Wang P, Zhang W, Fei Z, Zhen HN, You SW, Yang H (2009) Brain tumor stem-like cells identified by neural stem cell marker CD15. Transl Oncol 2:247–257PubMedGoogle Scholar
  107. 107.
    Patru C, Romao L, Varlet P, Coulombel L, Raponi E, Cadusseau J, Renault-Mihara F, Thirant C, Leonard N, Berhneim A, Mihalescu-Maingot M, Haiech J, Bieche I, Moura-Neto V, Daumas-Duport C, Junier MP, Chneiweiss H (2010) CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer 10:66PubMedGoogle Scholar
  108. 108.
    Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, Febbo PG, Wechsler-Reya RJ (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15:135–147PubMedGoogle Scholar
  109. 109.
    Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, Harper L, Austin R, Nieuwenhuis E, Clarke ID, Hui CC, Dirks PB (2009) Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69:4682–4690PubMedGoogle Scholar
  110. 110.
    Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020PubMedGoogle Scholar
  111. 111.
    Chang WW, Lee CH, Lee P, Lin J, Hsu CW, Hung JT, Lin JJ, Yu JC, Shao LE, Yu J, Wong CH, Yu AL (2008) Expression of Globo H and SSEA3 in breast cancer stem cells and the involvement of fucosyl transferases 1 and 2 in Globo H synthesis. Proc Natl Acad Sci USA 105:11667–11672PubMedGoogle Scholar
  112. 112.
    Yagi H, Yanagisawa M, Kato K, Yu RK (2010) Lysosome-associated membrane protein 1 is a major SSEA-1-carrier protein in mouse neural stem cells. Glycobiology 20:976–981PubMedGoogle Scholar
  113. 113.
    Inoko E, Nishiura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, Sato C (2010) Developmental stage-dependent expression of an α2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 20:916–928PubMedGoogle Scholar
  114. 114.
    Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191PubMedGoogle Scholar
  115. 115.
    Yu RK, Ariga T (2000) Ganglioside analysis by high-performance thin-layer chromatography. Methods Enzymol 312:115–134PubMedGoogle Scholar
  116. 116.
    IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (1997) Nomenclature of glycolipids. Pure Appl Chem 69:2475–2487Google Scholar
  117. 117.
    Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10:613–623PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Molecular Medicine and GeneticsMedical College of GeorgiaAugustaUSA

Personalised recommendations