Advertisement

Neurochemical Research

, Volume 36, Issue 7, pp 1253–1260 | Cite as

Apoptotic and Non-apoptotic Caspase Functions in Neural Development

  • Masayuki MiuraEmail author
ORIGINAL PAPER

Abstract

During neural development, massive cell death occurs in both vertebrates and invertebrates. Caspase is a central player in apoptosis that is evolutionally conserved. Genetic manipulation of the caspase activity in Drosophila and mice has revealed that caspases control cell fate through apoptotic and non-apoptotic mechanisms, to ensure appropriate cell differentiation and maturation in the developing nervous system.

Keywords

Caspase Neural development Apoptosis Cell death 

Notes

Acknowledgments

I deeply thank Professor K. Mikoshiba, my wonderful mentor, for his incredible passion for developmental biology that stimulated and greatly inspired me. I thank H. Kanuka (Obihiro Univ.) and E. Kuranaga (Univ. Tokyo) for initiating the study of Drosophila sensory organ development that led to the finding of non-apoptotic caspase function in vivo, and for stimulating discussion. I also thank A. Koto for the live imaging study of the sensory organ and fruitful discussion. This work was supported in part by grants from the Japanese Ministry of Education, Science, Sports, Culture and Technology and by a RIKEN Bioarchitect Research Grant.

References

  1. 1.
    Weil M, Jacobson MD, Raff MC (1997) Is programmed cell death required for neural tube closure? Curr Biol 7(4):281–284PubMedCrossRefGoogle Scholar
  2. 2.
    Kuida K et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384(6607):368–372PubMedCrossRefGoogle Scholar
  3. 3.
    Kuida K et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94(3):325–337PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshida H et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750PubMedCrossRefGoogle Scholar
  5. 5.
    Madden SD, Cotter TG (2008) Cell death in brain development and degeneration: control of caspase expression may be key!. Mol Neurobiol 37(1):1–6PubMedCrossRefGoogle Scholar
  6. 6.
    Bredesen DE, Rao RV, Mehlen P (2006) Cell death in the nervous system. Nature 443(7113):796–802PubMedCrossRefGoogle Scholar
  7. 7.
    Gao Y et al (2000) Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404(6780):897–900PubMedCrossRefGoogle Scholar
  8. 8.
    Barnes DE, Stamp G, Rosewell I, Denzel A, Lindahl T (1998) Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8(25):1395–1398PubMedCrossRefGoogle Scholar
  9. 9.
    Orii KE, Lee Y, Kondo N, McKinnon PJ (2006) Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci USA 103(26):10017–10022PubMedCrossRefGoogle Scholar
  10. 10.
    Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156PubMedCrossRefGoogle Scholar
  11. 11.
    Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75(4):653–660PubMedCrossRefGoogle Scholar
  12. 12.
    Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14(1):66–72PubMedCrossRefGoogle Scholar
  13. 13.
    Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 17(3):135–144PubMedCrossRefGoogle Scholar
  14. 14.
    Daish TJ, Mills K, Kumar S (2004) Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. Dev Cell 7(6):909–915PubMedCrossRefGoogle Scholar
  15. 15.
    Chew SK et al (2004) The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila. Dev Cell 7(6):897–907PubMedCrossRefGoogle Scholar
  16. 16.
    Xu D, Li Y, Arcaro M, Lackey M, Bergmann A (2005) The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila. Development 132(9):2125–2134PubMedCrossRefGoogle Scholar
  17. 17.
    Waldhuber M, Emoto K, Petritsch C (2005) The Drosophila caspase DRONC is required for metamorphosis and cell death in response to irradiation and developmental signals. Mech Dev 122(7–8):914–927PubMedCrossRefGoogle Scholar
  18. 18.
    Kondo S, Senoo-Matsuda N, Hiromi Y, Miura M (2006) DRONC coordinates cell death and compensatory proliferation. Mol Cell Biol 26(19):7258–7268PubMedCrossRefGoogle Scholar
  19. 19.
    Xu D et al (2006) The effector caspases drICE and dcp-1 have partially overlapping functions in the apoptotic pathway in Drosophila. Cell Death Differ 13(10):1697–1706PubMedCrossRefGoogle Scholar
  20. 20.
    Muro I et al (2006) The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process. Development 133(17):3305–3315PubMedCrossRefGoogle Scholar
  21. 21.
    Rodriguez A et al (1999) Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nat Cell Biol 1(5):272–279PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou L, Song Z, Tittel J, Steller H (1999) HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol Cell 4(5):745–755PubMedCrossRefGoogle Scholar
  23. 23.
    Kanuka H et al (1999) Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. Mol Cell 4(5):757–769PubMedCrossRefGoogle Scholar
  24. 24.
    Srivastava M et al (2007) ARK, the Apaf-1 related killer in Drosophila, requires diverse domains for its apoptotic activity. Cell Death Differ 14(1):92–102PubMedCrossRefGoogle Scholar
  25. 25.
    Leonard JR, Klocke BJ, D’Sa C, Flavell RA, Roth KA (2002) Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol 61(8):673–677PubMedGoogle Scholar
  26. 26.
    Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94(6):727–737PubMedCrossRefGoogle Scholar
  27. 27.
    Blaschke AJ, Staley K, Chun J (1996) Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122(4):1165–1174PubMedGoogle Scholar
  28. 28.
    Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501PubMedCrossRefGoogle Scholar
  29. 29.
    Oppenheim RW et al (2008) Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway involving autophagy. J Neurosci 28(6):1490–1497PubMedCrossRefGoogle Scholar
  30. 30.
    Yaginuma H et al (2001) Caspase activity is involved in, but is dispensable for, early motoneuron death in the chick embryo cervical spinal cord. Mol Cell Neurosci 18(2):168–182PubMedCrossRefGoogle Scholar
  31. 31.
    Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19(12):1671–1673PubMedGoogle Scholar
  32. 32.
    Rohn TT, Cusack SM, Kessinger SR, Oxford JT (2004) Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 295(1):215–225PubMedCrossRefGoogle Scholar
  33. 33.
    Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37(6):939–952PubMedCrossRefGoogle Scholar
  34. 34.
    Ohsawa S et al (2010) Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci USA 107(30):13366–13371PubMedCrossRefGoogle Scholar
  35. 35.
    Haynie JL, Bryant PJ (1976) Intercalary regeneration in imaginal wing disk of Drosophila melanogaster. Nature 259(5545):659–662PubMedCrossRefGoogle Scholar
  36. 36.
    Huh JR, Guo M, Hay BA (2004) Compensatory proliferation induced by cell death in the Drosophila wing disc requires activity of the apical cell death caspase Dronc in a nonapoptotic role. Curr Biol 14(14):1262–1266PubMedCrossRefGoogle Scholar
  37. 37.
    Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16(16):1606–1615PubMedCrossRefGoogle Scholar
  38. 38.
    Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7(4):491–501PubMedCrossRefGoogle Scholar
  39. 39.
    Perez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131(22):5591–5598PubMedCrossRefGoogle Scholar
  40. 40.
    Perez-Garijo A, Martin FA, Struhl G, Morata G (2005) Dpp signaling and the induction of neoplastic tumors by caspase-inhibited apoptotic cells in Drosophila. Proc Natl Acad Sci USA 102(49):17664–17669PubMedCrossRefGoogle Scholar
  41. 41.
    Perez-Garijo A, Shlevkov E, Morata G (2009) The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136(7):1169–1177PubMedCrossRefGoogle Scholar
  42. 42.
    Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14(3):399–410PubMedCrossRefGoogle Scholar
  43. 43.
    Avery L, Horvitz HR (1987) A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51(6):1071–1078PubMedCrossRefGoogle Scholar
  44. 44.
    Chalfie M, Horvitz HR, Sulston JE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24(1):59–69PubMedCrossRefGoogle Scholar
  45. 45.
    de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117(1):107–116CrossRefGoogle Scholar
  46. 46.
    Stern C (1954) Two or three bristles. American Sci 42(1):213–247Google Scholar
  47. 47.
    Kanuka H et al (2005) Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J 24(21):3793–3806PubMedCrossRefGoogle Scholar
  48. 48.
    Cubas P, de Celis JF, Campuzano S, Modolell J (1991) Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev 5(6):996–1008PubMedCrossRefGoogle Scholar
  49. 49.
    Skeath JB, Carroll SB (1991) Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes Dev 5(6):984–995PubMedCrossRefGoogle Scholar
  50. 50.
    Hartenstein V, Posakony JW (1989) Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107(2):389–405PubMedGoogle Scholar
  51. 51.
    Huang F, Dambly-Chaudiere C, Ghysen A (1991) The emergence of sense organs in the wing disc of Drosophila. Development 111(4):1087–1095PubMedGoogle Scholar
  52. 52.
    Nolo R, Abbott LA, Bellen HJ (2000) Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102(3):349–362PubMedCrossRefGoogle Scholar
  53. 53.
    Barad O, Rosin D, Hornstein E, Barkai N (2010) Error minimization in lateral inhibition circuits. Sci Signal 3(129):ra51PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B (2010) Dynamic filopodia transmit intermittent Delta-Notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19(1):78–89PubMedCrossRefGoogle Scholar
  55. 55.
    Koto A, Kuranaga E, Miura M (2009) Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development. J Cell Biol 187(2):219–231PubMedCrossRefGoogle Scholar
  56. 56.
    Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4(5):687–697PubMedCrossRefGoogle Scholar
  57. 57.
    Arama E, Bader M, Srivastava M, Bergmann A, Steller H (2006) The two Drosophila cytochrome C proteins can function in both respiration and caspase activation. EMBO J 25(1):232–243PubMedCrossRefGoogle Scholar
  58. 58.
    Huh JR et al (2004) Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization. PLoS Biol 2(1):E15PubMedCrossRefGoogle Scholar
  59. 59.
    Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW (2006) Local caspase activity directs engulfment of dendrites during pruning. Nat Neurosci 9(10):1234–1236PubMedCrossRefGoogle Scholar
  60. 60.
    Kuo CT, Zhu S, Younger S, Jan LY, Jan YN (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51(3):283–290PubMedCrossRefGoogle Scholar
  61. 61.
    White K et al (1994) Genetic control of programmed cell death in Drosophila. Science 264(5159):677–683PubMedCrossRefGoogle Scholar
  62. 62.
    Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 10(8):561–574PubMedCrossRefGoogle Scholar
  63. 63.
    Kuranaga E et al (2006) Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs. Cell 126(3):583–596PubMedCrossRefGoogle Scholar
  64. 64.
    Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137PubMedCrossRefGoogle Scholar
  65. 65.
    Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160(2):235–243PubMedCrossRefGoogle Scholar
  66. 66.
    Adachi-Yamada T, Fujimura-Kamada K, Nishida Y, Matsumoto K (1999) Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400(6740):166–169PubMedCrossRefGoogle Scholar
  67. 67.
    Adachi-Yamada T, O’Connor MB (2002) Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Dev Biol 251(1):74–90PubMedCrossRefGoogle Scholar
  68. 68.
    Wakamatsu Y, Mochii M, Vogel KS, Weston JA (1998) Avian neural crest-derived neurogenic precursors undergo apoptosis on the lateral migration pathway. Development 125(21):4205–4213PubMedGoogle Scholar
  69. 69.
    Held LI (2002) Bristle pattern. In: Imaginal discs. The genetic and cellular logic of pattern formation. Cambridge University Press Cambridge, pp 31–75Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Genetics, Graduate School of Pharmaceutical SciencesThe University of Tokyo and CRESTTokyoJapan

Personalised recommendations