Advertisement

Neurochemical Research

, Volume 36, Issue 2, pp 250–257 | Cite as

Effects of Melissa officinalis L. (Lemon Balm) Extract on Neurogenesis Associated with Serum Corticosterone and GABA in the Mouse Dentate Gyrus

  • Dae Young Yoo
  • Jung Hoon Choi
  • Woosuk Kim
  • Ki-Yeon Yoo
  • Choong Hyun Lee
  • Yeo Sung Yoon
  • Moo-Ho Won
  • In Koo Hwang
ORIGINAL PAPER

Abstract

Lemon balm, leaves of Melissa officinalis L., has been used for anti-anxiety and spasmolytics. We observed the extract of Melissa officinalis L. (MOE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of middle-aged mice (12 months of age) using Ki67 and doublecortin (DCX), respectively. We also observed changes in corticosterone, GAD67 and GABA-transaminase (GABA-T) to check their possible mechanisms related to neurogenesis. We administered 50 or 200 mg/kg MOE to the animals once a day for 3 weeks. For labeling of newly generated cells, we also administered 5-bromodeoxyuridine (BrdU) twice a day for 3 days from the day of the first MOE treatment. Administration of 50 or 200 mg/kg MOE dose-dependently increased Ki67 positive nuclei to 244.1 and 763.9% of the vehicle-treated group, respectively. In addition, 50 or 200 mg/kg MOE significantly increased DCX positive neuroblasts with well-developed (tertiary) dendrites. Furthermore, MOE administration significantly increased BrdU/calbindin D-28 k double labeled cells (integrated neurons into granule cells in the DG) to 245.2% of the vehicle-treated group. On the other hand, administration of MOE reduced corticosterone levels in serum and decreased GABA-T levels in the DG homogenates. These results suggest that MOE increases cell proliferation, neuroblast differentiation and integration into granule cells by decreasing serum corticosterone levels as well as by increasing GABA levels in the mouse DG.

Keywords

Lemon balm Hippocampus Cell proliferation Ki67 Neuroblast differentiation Doublecortin GABA 

Notes

Acknowledgments

The authors would like to thank Mr. Seung Uk Lee and Mrs. Hyun Sook Kim for their technical help in this study. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010580), and by a grant (2010K000823) from Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Education, Science and Technology, the Republic of Korea.

References

  1. 1.
    Arida RM, Scorza FA, Scorza CA, Cavalheiro EA (2009) Is physical activity beneficial for recovery in temporal lobe epilepsy? Evidences from animal studies. Neurosci Biobehav Rev 33:422–431PubMedCrossRefGoogle Scholar
  2. 2.
    Schaeffer EL, Novaes BA, da Silva ER, Skaf HD, Mendes-Neto AG (2009) Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Prog Neuropsychopharmacol Biol Psychiatry 33:1087–1102PubMedCrossRefGoogle Scholar
  3. 3.
    Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686PubMedCrossRefGoogle Scholar
  4. 4.
    Liu Z, Fan Y, Won SJ et al (2007) Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38:146–152PubMedCrossRefGoogle Scholar
  5. 5.
    Ohm TG (2007) The dentate gyrus in Alzheimer’s disease. Prog Brain Res 163:723–740PubMedCrossRefGoogle Scholar
  6. 6.
    Li B, Yamamori H, Tatebayashi Y et al (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67:78–84PubMedCrossRefGoogle Scholar
  7. 7.
    Rodríguez JJ, Jones VC, Tabuchi M et al (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One 3:e2935PubMedCrossRefGoogle Scholar
  8. 8.
    Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  9. 9.
    Limoli CL, Giedzinski E, Baure J, Doctrow SR, Rola R, Fike JR (2006) Using superoxide dismutase/catalase mimetics to manipulate the redox environment of neural precursor cells. Radiat Prot Dosimetry 122:228–236PubMedCrossRefGoogle Scholar
  10. 10.
    Kennedy DO, Little W, Scholey AB (2004) Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (Lemon Balm). Psychosom Med 66:607–613PubMedCrossRefGoogle Scholar
  11. 11.
    Ulbricht C, Brendler T, Gruenwald J et al (2005) Lemon balm (Melissa officinalis L.): an evidence-based systematic review by the Natural Standard Research Collaboration. J Herb Pharmacother 5:71–114PubMedCrossRefGoogle Scholar
  12. 12.
    Wheatley D (2005) Medicinal plants for insomnia: a review of their pharmacology, efficacy and tolerability. J Psychopharmacol 19:414–421PubMedCrossRefGoogle Scholar
  13. 13.
    Kennedy DO, Little W, Haskell CF, Scholey AB (2006) Anxiolytic effects of a combination of Melissa officinalis and Valeriana officinalis during laboratory induced stress. Phytother Res 20:96–102PubMedCrossRefGoogle Scholar
  14. 14.
    Mencherini T, Picerno P, Scesa C, Aquino R (2007) Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. J Nat Prod 70:1889–1894PubMedCrossRefGoogle Scholar
  15. 15.
    Pereira RP, Fachinetto R, de Souza Prestes A et al (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res 34:973–983PubMedCrossRefGoogle Scholar
  16. 16.
    Awad R, Muhammad A, Durst T, Trudeau VL, Arnason JT (2009) Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytother. Res 23:1075–1081Google Scholar
  17. 17.
    Lópex V, Martín S, Gómez-Serranillos MP, Carretero ME, Jäger AJ, Calvo MI (2009) Neuroprotective and neurological properties of Melissa officinalis. Neurochem Res 34:1955–1961CrossRefGoogle Scholar
  18. 18.
    Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815PubMedCrossRefGoogle Scholar
  19. 19.
    Ge S, Goh ELK, Sailor KA, Kitabatake Y, Ming G-I, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593PubMedCrossRefGoogle Scholar
  20. 20.
    Kee N, Sivalingam S, Boonstra R, Wojtowicz JM (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115:97–105PubMedCrossRefGoogle Scholar
  21. 21.
    Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256PubMedCrossRefGoogle Scholar
  22. 22.
    Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271PubMedCrossRefGoogle Scholar
  23. 23.
    Ibarra A, Feuillere N, Roller M, Lesburgere E, Beracochea D (2010) Effects of chronic administration of Melissa officinalis L. extract on anxiety-like reactivity and on circadian and exploratory activities in mice. Phytomedicine 17:397–403PubMedCrossRefGoogle Scholar
  24. 24.
    Brown J, Cooper-Kuhn CM, Kempermann G, van Praag H et al (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17:2042–2046PubMedCrossRefGoogle Scholar
  25. 25.
    Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14PubMedCrossRefGoogle Scholar
  26. 26.
    Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  27. 27.
    Choi EY, Jang SH, Choi SY (1996) Human brain GABA transaminase is immunologically distinct from those of other mammalian brains. Neurochem Int 28:597–600PubMedCrossRefGoogle Scholar
  28. 28.
    Choi EY, Jang SH, Kim I, Park SK, Choi SY (1993) Production and characterization of monoclonal antibodies to bovine brain GABA transaminase. Mol Cells 3:452–455Google Scholar
  29. 29.
    Hwang IK, Yoo KY, Li H et al (2008) Time course of changes in immunoreactivities of GABA degradation enzymes in the hippocampal CA1 region after adrenalectomy in gerbils. Neurochem Res 33:938–944PubMedCrossRefGoogle Scholar
  30. 30.
    Sloviter RS, Valiquette G, Abrams GM et al (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243:535–538PubMedCrossRefGoogle Scholar
  31. 31.
    Gould E, Woolley CS, McEwen BS (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37:367–375PubMedCrossRefGoogle Scholar
  32. 32.
    Montaron MF, Piazza PV, Aurousseau C, Urani A, Le Moal M, Abrous DN (2003) Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. Eur J Neurosci 18:3105–3111PubMedCrossRefGoogle Scholar
  33. 33.
    Pinnock SB, Herbert J (2008) Brain-derived neurotropic factor and neurogenesis in the adult rat dentate gyrus: interactions with corticosterone. Eur J Neurosci 27:2493–2500PubMedCrossRefGoogle Scholar
  34. 34.
    Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y (2007) EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J 21:2400–2408PubMedCrossRefGoogle Scholar
  35. 35.
    Yoo DY, Nam Y, Kim W et al (2010) Effects of Ginkgo biloba extract on promotion of neurogenesis in the hippocampal dentate gyrus in C57BL/6 mice. J Vet Med Sci. doi: 10.1292/jvms.10-0294
  36. 36.
    Yoo KY, Park OK, Hwang IK et al (2008) Induction of cell proliferation and neuroblasts in the subgranular zone of the dentate gyrus by aqueous extract from Platycodon grandiflorum in middle-aged mice. Neurosci Lett 444:97–101PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11PubMedCrossRefGoogle Scholar
  38. 38.
    Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) γ-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 112:247–263PubMedCrossRefGoogle Scholar
  39. 39.
    Awad R, Levac D, Cybulska P, Merali Z, Trudeau VL, Arnason JT (2007) Effects of traditionally used anxiolytic botanicals on enzymes of the γ-aminobutyric acid (GABA) system. Can J Physiol Pharmacol 85:933–942PubMedCrossRefGoogle Scholar
  40. 40.
    Mayo W, Lemaire NV, Malaterre J et al (2005) Pregnenolone sulfate enhances neurogenesis and PSA-NCAM in young and aged hippocampus. Neurobiol Aging 26:103–114PubMedCrossRefGoogle Scholar
  41. 41.
    Wadiche LO, Bromberg DA, Bensen AL, Westbrook GL (2005) GABAergic signalling to newborn neurons in dentate gyrus. J Neurophysiol 94:4528–4532CrossRefGoogle Scholar
  42. 42.
    Wang L-P, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29:181–189PubMedCrossRefGoogle Scholar
  43. 43.
    Methippara M, Bashir T, Suntsova N, Szymusiak R, McGinty D (2010) Hippocampal adult neurogenesis is enhanced by chronic eszopiclone treatment in rats. J Sleep Res 19:384–393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dae Young Yoo
    • 1
  • Jung Hoon Choi
    • 2
  • Woosuk Kim
    • 1
  • Ki-Yeon Yoo
    • 3
  • Choong Hyun Lee
    • 4
    • 5
  • Yeo Sung Yoon
    • 1
  • Moo-Ho Won
    • 4
  • In Koo Hwang
    • 1
  1. 1.Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary ScienceSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Anatomy, College of Veterinary MedicineKangwon National UniversityChuncheonSouth Korea
  3. 3.Institute of Natural MedicineHallym UniversityChuncheonSouth Korea
  4. 4.Department of Neurobiology, School of MedicineKangwon National UniversityChuncheonSouth Korea
  5. 5.Laboratory of Veterinary Pharmacology, College of Veterinary MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations