Neurochemical Research

, Volume 36, Issue 1, pp 1–6 | Cite as

Central and Peripheral Cytokines Mediate Immune-Brain Connectivity

ORIGINAL PAPER

Abstract

The immune system is a homeostatic system that contributes to maintain the constancy of the molecular and cellular components of the organism. Immune cells can detect the intrusion of foreign antigens or alteration of self-components and send information to the central nervous system (CNS) about this kind of perturbations, acting as a receptor sensorial organ. The brain can respond to such signals by emitting neuro/endocrine signals capable of affecting immune reactivity. Thus, the immune system, as other physiologic systems, is under brain control. Under disease conditions, when priorities for survival change, the immune system can, within defined limits, reset brain-integrated neuro-endocrine mechanisms in order to favour immune processes at the expenses of other physiologic systems. In addition, some cytokines initially conceived as immune products, such as IL-1 and IL-6, are also produced in the “healthy” brain by glial cells and even by some neurons. These and other cytokines have the capacity to affect synaptic plasticity acting as mediators of interactions between astrocytes and pre- and post-synaptic neurons that constitute what is actually defined as a tripartite synapse. Since the production of cytokines in the brain is affected by peripheral immune and central neural signals, it is conceivable that tripartite synapses can, in turn, serve as a relay system in immune-CNS communication.

Keywords

Cytokines IL-1 IL-6 Synaptic plasticity Memory Learning Glucose homeostasis Tripartite synapse 

References

  1. 1.
    Besedovsky HO, del Rey A (2007) Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun 21:34–44CrossRefPubMedGoogle Scholar
  2. 2.
    Besedovsky HO, del Rey A (2008) Brain Cytokines as integrators of the immune-neuroendocrine network. In handbook of neurochemistry and molecular neurobiology, Lajtha A, ed. Springer p. 1–17Google Scholar
  3. 3.
    del Rey A, Wolff C, Wildmann J, Randolf A, Hahnel A, Besedovsky HO, Straub RH (2008) Disrupted brain-immune system-joint communication during experimental arthritis. Arthritis Rheum 58:3090–3099CrossRefPubMedGoogle Scholar
  4. 4.
    Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci USA 95:7778–7783CrossRefPubMedGoogle Scholar
  5. 5.
    Besedovsky H, Pitossi F, Schneider H, Balschun D and del Rey A (1999) Cytokines in the brain as mediators of immune-neuro-endocrine interactions. J Neuroimmunol 31(abs):2Google Scholar
  6. 6.
    Balschun D, Wetzel W, del Rey A, Pitossi F, Schneider H, Zuschratter W, Besedovsky HO (2004) Interleukin-6: a cytokine to forget. Faseb J 18:1788–1790PubMedGoogle Scholar
  7. 7.
    Jankowsky JL, Derrick BE, Patterson PH (2000) Cytokine responses to LTP induction in the rat hippocampus: a comparison of in vitro and in vivo techniques. Learn Mem 7:400–412CrossRefPubMedGoogle Scholar
  8. 8.
    Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol 181:323–326CrossRefPubMedGoogle Scholar
  9. 9.
    Bellinger FP, Madamba S, Siggins GR (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res 628:227–234CrossRefPubMedGoogle Scholar
  10. 10.
    Tancredi V, Zona C, Velotti F, Eusebi F, Santoni A (1990) Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus. Brain Res 525:149–151CrossRefPubMedGoogle Scholar
  11. 11.
    Chan O, Inouye K, Vranic M, Matthews SG (2002) Hyperactivation of the hypothalamo-pituitary-adrenocortical axis in streptozotocin-diabetes is associated with reduced stress responsiveness and decreased pituitary and adrenal sensitivity. Endocrinology 143:1761–1768CrossRefPubMedGoogle Scholar
  12. 12.
    D’Arcangelo G, Grassi F, Ragozzino D, Santoni A, Tancredi V, Eusebi F (1991) Interferon inhibits synaptic potentiation in rat hippocampus. Brain Res 564:245–248CrossRefPubMedGoogle Scholar
  13. 13.
    Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) Interferon-alpha inhibits long-term potentiation and unmasks a long-term depression in the rat hippocampus. Brain Res 885:14–24CrossRefPubMedGoogle Scholar
  14. 14.
    Tancredi V, D’Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A, Eusebi F (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146:176–178CrossRefPubMedGoogle Scholar
  15. 15.
    Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35:151–159CrossRefPubMedGoogle Scholar
  16. 16.
    Li AJ, Katafuchi T, Oda S, Hori T, Oomura Y (1997) Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Res 748:30–38CrossRefPubMedGoogle Scholar
  17. 17.
    Curran B, O’Connor JJ (2001) The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Neuroscience 108:83–90CrossRefPubMedGoogle Scholar
  18. 18.
    Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus 13:826–834CrossRefPubMedGoogle Scholar
  19. 19.
    Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32:1106–1115CrossRefPubMedGoogle Scholar
  20. 20.
    Muller N, Ackenheil M (1998) Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 22:1–33CrossRefPubMedGoogle Scholar
  21. 21.
    Anisman H, Merali Z, Poulter MO, Hayley S (2005) Cytokines as a precipitant of depressive illness: animal and human studies. Curr Pharm Des 11:963–972CrossRefPubMedGoogle Scholar
  22. 22.
    Yirmiya R, Winocur G, Goshen I (2002) Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning. Neurobiol Learn Mem 78:379–389CrossRefPubMedGoogle Scholar
  23. 23.
    Goshen I, Avital A, Kreisel T, Licht T, Segal M, Yirmiya R (2009) Environmental enrichment restores memory functioning in mice with impaired IL-1 signaling via reinstatement of long-term potentiation and spine size enlargement. J Neurosci 29:3395–3403CrossRefPubMedGoogle Scholar
  24. 24.
    Spulber S, Mateos L, Oprica M, Cedazo-Minguez A, Bartfai T, Winblad B, Schultzberg M (2009) Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J Neuroimmunol 208:46–53CrossRefPubMedGoogle Scholar
  25. 25.
    Braida D, Sacerdote P, Panerai AE, Bianchi M, Aloisi AM, Iosue S, Sala M (2004) Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res 153:423–429CrossRefPubMedGoogle Scholar
  26. 26.
    del Rey A, Besedovsky H (1989) Antidiabetic effects of interleukin 1. Proc Natl Acad Sci USA 86:5943–5947CrossRefPubMedGoogle Scholar
  27. 27.
    Metzger S, Nusair S, Planer D, Barash V, Pappo O, Shilyansky J, Chajek-Shaul T (2004) Inhibition of hepatic gluconeogenesis and enhanced glucose uptake contribute to the development of hypoglycemia in mice bearing interleukin-1beta- secreting tumor. Endocrinology 145:5150–5156CrossRefPubMedGoogle Scholar
  28. 28.
    Fukuzumi M, Shinomiya H, Shimizu Y, Ohishi K, Utsumi S (1996) Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1. Infect Immun 64:108–112PubMedGoogle Scholar
  29. 29.
    Tabernero A, Medina JM, Giaume C (2006) Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem 99:1049–1061CrossRefPubMedGoogle Scholar
  30. 30.
    Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295:E242–E253CrossRefPubMedGoogle Scholar
  31. 31.
    Fox CJ, Hammerman PS, Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5:844–852CrossRefPubMedGoogle Scholar
  32. 32.
    Shimizu H, Uehara Y, Shimomura Y, Negishi M, Kobayashi I, Kobayashi S (1991) Involvement of interleukin-1 in the inhibition of in vivo insulin release: possible role of adrenal glands. J Endocrinol Invest 14:401–404PubMedGoogle Scholar
  33. 33.
    Maitra SR, Wojnar MM, Lang CH (2000) Alterations in tissue glucose uptake during the hyperglycemic and hypoglycemic phases of sepsis. Shock 13:379–385CrossRefPubMedGoogle Scholar
  34. 34.
    McGuinness OP (2005) Defective glucose homeostasis during infection. Annu Rev Nutr 25:9–35CrossRefPubMedGoogle Scholar
  35. 35.
    Vella AT, Mitchell T, Groth B, Linsley PS, Green JM, Thompson CB, Kappler JW, Marrack P (1997) CD28 engagement and proinflammatory cytokines contribute to T cell expansion and long-term survival in vivo. J Immunol 158:4714–4720PubMedGoogle Scholar
  36. 36.
    Huber M, Beuscher HU, Rohwer P, Kurrle R, Rollinghoff M, Lohoff M (1998) Costimulation via TCR and IL-1 receptor reveals a novel IL-1alpha-mediated autocrine pathway of Th2 cell proliferation. J Immunol 160:4242–4247PubMedGoogle Scholar
  37. 37.
    al-Ramadi BK, Welte T, Fernandez-Cabezudo MJ, Galadari S, Dittel B, Fu XY, Bothwell AL (2001) The Src-protein tyrosine kinase Lck is required for IL-1-mediated costimulatory signaling in Th2 cells. J Immunol 167:6827–6833PubMedGoogle Scholar
  38. 38.
    del Rey A, Roggero E, Randolf A, Mahuad C, McCann S, Rettori V, Besedovsky HO (2006) IL-1 resets glucose homeostasis at central levels. Proc Natl Acad Sci USA 103:16039–16044CrossRefPubMedGoogle Scholar
  39. 39.
    Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262CrossRefPubMedGoogle Scholar
  40. 40.
    Gavillet M, Allaman I, Magistretti PJ (2008) Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia 56:975–989CrossRefPubMedGoogle Scholar
  41. 41.
    Srinivasan D, Yen JH, Joseph DJ, Friedman W (2004) Cell type-specific interleukin-1beta signaling in the CNS. J Neurosci 24:6482–6488CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang X, Zhang J, Chen C (2009) Long-term potentiation at hippocampal perforant path-dentate astrocyte synapses. Biochem Biophys Res Commun 383:326–330CrossRefPubMedGoogle Scholar
  43. 43.
    Vega C, Pellerin L, Dantzer R, Magistretti PJ (2002) Long-term modulation of glucose utilization by IL-1 alpha and TNF-alpha in astrocytes: Na+ pump activity as a potential target via distinct signaling mechanisms. Glia 39:10–18CrossRefPubMedGoogle Scholar
  44. 44.
    Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90:875S–880SCrossRefPubMedGoogle Scholar
  45. 45.
    Liu H, Rohowsky-Kochan C (2008) Regulation of IL-17 in human CCR6+ effector memory T cells. J Immunol 180:7948–7957PubMedGoogle Scholar
  46. 46.
    Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, Dinarello CA, Paul WE (2009) IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci USA 106:7119–7124CrossRefPubMedGoogle Scholar
  47. 47.
    Allen NJ, Barres BA (2009) Neuroscience: glia—more than just brain glue. Nature 457:675–677CrossRefPubMedGoogle Scholar
  48. 48.
    Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431CrossRefPubMedGoogle Scholar
  49. 49.
    Santello M, Volterra A (2010) Neuroscience: astrocytes as aide-memoires. Nature 463:169–170CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department ImmunophysiologyInstitute of Physiology and Pathophysiology, Medical FacultyMarburgGermany

Personalised recommendations