Neurochemical Research

, Volume 35, Issue 10, pp 1487–1500 | Cite as

Proteomic Studies on the Development of the Central Nervous System and Beyond

  • Chenggang ZhangEmail author


Neuroproteomics has become a ‘symbol’ or even a ‘sign’ for neuroscientists in the post-genomic era. During the last several decades, a number of proteomic approaches have been used widely to decipher the complexity of the brain, including the study of embryonic stages of human or non-human animal brain development. The use of proteomic techniques has allowed for great scientific advancements, including the quantitative analysis of proteomic data using 2D-DIGE, ICAT and iTRAQ. In addition, proteomic studies of the brain have expanded into fields such as subproteomics, synaptoproteomics, neural plasma membrane proteomics and even mitochondrial proteomics. The rapid progress that has been made in this field will not only increase the knowledge based on the neuroproteomics of the developing brain but also help to increase the understanding of human neurological diseases. This paper will focus on proteomic studies in the central nervous system and especially those conducted on the development of the brain in order to summarize the advances in this rapidly developing field.


Proteomics Neuroproteomics Development Central nervous system 



We wish to thank the anonymous reviewers for their valuable suggestions for this manuscript. This work is supported by the National Basic Research Project (973 program) (2006CB504100), The National Key Technologies R&D Program for New Drugs (2009ZX09103-616, 2009ZX09503-002, 2009ZX09301-002), General Program (30900830, 30973107, 30800196, 30772293) of General Program of National Natural Science Foundation of China, Major Program for Science and Technology Research of Beijing Municipal Bureau (7061004).


  1. 1.
    Choudhary J, Grant SG (2004) Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 7(5):440–445PubMedCrossRefGoogle Scholar
  2. 2.
    Becker M, Schindler J, Nothwang HG (2006) Neuroproteomics—the tasks lying ahead. Electrophoresis 27(13):2819–2829PubMedCrossRefGoogle Scholar
  3. 3.
    Bayes A, Grant SG (2009) Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat Rev Neurosci 10(9):635–646PubMedCrossRefGoogle Scholar
  4. 4.
    Svensson M, Skold K, Nilsson A, Falth M, Nydahl K, Svenningsson P, Andren PE (2007) Neuropeptidomics: MS applied to the discovery of novel peptides from the brain. Anal Chem 79(1):15–16–18–21PubMedCrossRefGoogle Scholar
  5. 5.
    Andrade EC, Krueger DD, Nairn AC (2007) Recent advances in neuroproteomics. Curr Opin Mol Ther 9(3):270–281PubMedGoogle Scholar
  6. 6.
    Shin JH, Krapfenbauer K, Lubec G (2005) Column chromatographic prefractionation leads to the detection of 543 different gene products in human fetal brain. Electrophoresis 26(14):2759–2778PubMedCrossRefGoogle Scholar
  7. 7.
    Fountoulakis M, Juranville JF, Dierssen M, Lubec G (2002) Proteomic analysis of the fetal brain. Proteomics 2(11):1547–1576PubMedCrossRefGoogle Scholar
  8. 8.
    Carrette O, Burkhard PR, Hochstrasser DF, Sanchez JC (2006) Age-related proteome analysis of the mouse brain: a 2-DE study. Proteomics 6(18):4940–4949PubMedCrossRefGoogle Scholar
  9. 9.
    Chen W, Ji J, Xu X, He S, Ru B (2003) Proteomic comparison between human young and old brains by two-dimensional gel electrophoresis and identification of proteins. Int J Dev Neurosci 21(4):209–216PubMedGoogle Scholar
  10. 10.
    Wang J, Gu Y, Wang L, Hang X, Gao Y, Wang H, Zhang C (2007) HUPO BPP pilot study: a proteomics analysis of the mouse brain of different developmental stages. Proteomics 7(21):4008–4015PubMedCrossRefGoogle Scholar
  11. 11.
    Seefeldt I, Nebrich G, Romer I, Mao L, Klose J (2006) Evaluation of 2-DE protein patterns from pre- and postnatal stages of the mouse brain. Proteomics 6(18):4932–4939PubMedCrossRefGoogle Scholar
  12. 12.
    Yang S, Liu T, Li S, Zhang X, Ding Q, Que H, Yan X, Wei K, Liu S (2008) Comparative proteomic analysis of brains of naturally aging mice. Neuroscience 154(3):1107–1120PubMedCrossRefGoogle Scholar
  13. 13.
    Hartl D, Irmler M, Romer I, Mader MT, Mao L, Zabel C, de Angelis MH, Beckers J, Klose J (2008) Transcriptome and proteome analysis of early embryonic mouse brain development. Proteomics 8(6):1257–1265PubMedCrossRefGoogle Scholar
  14. 14.
    Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P (2006) Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm 113(8):1041–1054PubMedCrossRefGoogle Scholar
  15. 15.
    Van den Bergh G, Clerens S, Firestein BL, Burnat K, Arckens L (2006) Development and plasticity-related changes in protein expression patterns in cat visual cortex: a fluorescent two-dimensional difference gel electrophoresis approach. Proteomics 6(13):3821–3832PubMedCrossRefGoogle Scholar
  16. 16.
    Baudet ML, Hassanali Z, Sawicki G, List EO, Kopchick JJ, Harvey S (2008) Growth hormone action in the developing neural retina: a proteomic analysis. Proteomics 8(2):389–401PubMedCrossRefGoogle Scholar
  17. 17.
    Beranova-Giorgianni S, Pabst MJ, Russell TM, Giorgianni F, Goldowitz D, Desiderio DM (2002) Preliminary analysis of the mouse cerebellum proteome. Brain Res Mol Brain Res 98(1–2):135–140PubMedCrossRefGoogle Scholar
  18. 18.
    Weitzdorfer R, Hoger H, Shim KS, Cekici L, Pollak A, Lubec G (2008) Changes of hippocampal signaling protein levels during postnatal brain development in the rat. Hippocampus 18(8):807–813PubMedCrossRefGoogle Scholar
  19. 19.
    Chen P, Li X, Sun Y, Liu Z, Cao R, He Q, Wang M, Xiong J, Xie J, Wang X et al (2006) Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 98(4):1126–1140PubMedCrossRefGoogle Scholar
  20. 20.
    McNair K, Davies CH, Cobb SR (2006) Plasticity-related regulation of the hippocampal proteome. Eur J Neurosci 23(2):575–580PubMedCrossRefGoogle Scholar
  21. 21.
    Cobb SR, Pitt A (2008) Proteomics in the study of hippocampal plasticity. Expert Rev Proteomics 5(3):393–404PubMedCrossRefGoogle Scholar
  22. 22.
    Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin EF 3rd, Liotta LA (2005) CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics 2(1):57–70PubMedCrossRefGoogle Scholar
  23. 23.
    Hale JE, Gelfanova V, You JS, Knierman MD, Dean RA (2008) Proteomics of cerebrospinal fluid: methods for sample processing. Methods Mol Biol 425:53–66PubMedCrossRefGoogle Scholar
  24. 24.
    Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6(9):3537–3548PubMedCrossRefGoogle Scholar
  25. 25.
    Parada C, Gato A, Aparicio M, Bueno D (2006) Proteome analysis of chick embryonic cerebrospinal fluid. Proteomics 6(1):312–320PubMedCrossRefGoogle Scholar
  26. 26.
    Parada C, Gato A, Bueno D (2005) Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. J Proteome Res 4(6):2420–2428PubMedCrossRefGoogle Scholar
  27. 27.
    Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144PubMedCrossRefGoogle Scholar
  28. 28.
    Raedler TJ, Wiedemann K (2006) CSF-studies in neuropsychiatric disorders. Neuro Endocrinol Lett 27(3):297–305PubMedGoogle Scholar
  29. 29.
    Zhang J, Montine TJ (2007) Proteomic discovery of CSF biomarkers for Alzheimer’s disease. Ann Neurol 61(5):497 author reply 497–498PubMedCrossRefGoogle Scholar
  30. 30.
    Guo J, Sun Z, Xiao S, Liu D, Jin G, Wang E, Zhou J (2009) Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients. Cell Res 19(12):1401–1403PubMedCrossRefGoogle Scholar
  31. 31.
    Thambisetty M, Lovestone S (2010) Blood-based biomarkers of Alzheimer’s disease: challenging but feasible. Biomark Med 4(1):65–79PubMedCrossRefGoogle Scholar
  32. 32.
    Blakeley P, Siepen JA, Lawless C, Hubbard SJ (2010) Investigating protein isoforms via proteomics: a feasibility study. Proteomics 10(6):1127–1140PubMedCrossRefGoogle Scholar
  33. 33.
    Stoop MP, Lamers RJ, Burgers PC, Sillevis Smitt PA, Hintzen RQ, Luider TM (2008) The rate of false positive sequence matches of peptides profiled by MALDI MS and identified by MS/MS. J Proteome Res 7(11):4841–4847PubMedCrossRefGoogle Scholar
  34. 34.
    Portelius E, Dean RA, Gustavsson MK, Andreasson U, Zetterberg H, Siemers E, Blennow K (2010) A novel Abeta isoform pattern in CSF reflects gamma-secretase inhibition in Alzheimer disease. Alzheimers Res Ther 2(2):7PubMedCrossRefGoogle Scholar
  35. 35.
    Westman-Brinkmalm A, Ruetschi U, Portelius E, Andreasson U, Brinkmalm G, Karlsson G, Hansson S, Zetterberg H, Blennow K (2009) Proteomics/peptidomics tools to find CSF biomarkers for neurodegenerative diseases. Front Biosci 14:1793–1806PubMedCrossRefGoogle Scholar
  36. 36.
    D’Aguanno S, Del Boccio P, Bernardini S, Ballone E, Di Ilio C, Federici G, Urbani A (2007) Electrophoretic separations of cerebrospinal fluid proteins in clinical investigations. Clin Chem Lab Med 45(4):437–449PubMedCrossRefGoogle Scholar
  37. 37.
    Verhoeven NM, Guerand WS, Struys EA, Bouman AA, van der Knaap MS, Jakobs C (2000) Plasma creatinine assessment in creatine deficiency: A diagnostic pitfall. J Inherit Metab Dis 23(8):835–840PubMedCrossRefGoogle Scholar
  38. 38.
    Skalnikova H, Vodicka P, Gadher SJ, Kovarova H (2008) Proteomics of neural stem cells. Expert Rev Proteomics 5(2):175–186PubMedCrossRefGoogle Scholar
  39. 39.
    Chae JI, Kim J, Woo SM, Han HW, Cho YK, Oh KB, Nam KH, Kang YK (2009) Cytoskeleton-associated proteins are enriched in human embryonic-stem cell-derived neuroectodermal spheres. Proteomics 9(5):1128–1141PubMedCrossRefGoogle Scholar
  40. 40.
    Akama K, Tatsuno R, Otsu M, Horikoshi T, Nakayama T, Nakamura M, Toda T, Inoue N (2008) Proteomic identification of differentially expressed genes in mouse neural stem cells and neurons differentiated from embryonic stem cells in vitro. Biochim Biophys Acta 1784(5):773–782PubMedGoogle Scholar
  41. 41.
    Li KW, Jimenez CR (2008) Synapse proteomics: current status and quantitative applications. Expert Rev Proteomics 5(2):353–360PubMedCrossRefGoogle Scholar
  42. 42.
    Grant SG (2006) The synapse proteome and phosphoproteome: a new paradigm for synapse biology. Biochem Soc Trans 34(Pt 1):59–63PubMedGoogle Scholar
  43. 43.
    McClatchy DB, Liao L, Park SK, Venable JD, Yates JR (2007) Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res 17(9):1378–1388PubMedCrossRefGoogle Scholar
  44. 44.
    Bai F, Witzmann FA (2007) Synaptosome proteomics. Subcell Biochem 43:77–98PubMedCrossRefGoogle Scholar
  45. 45.
    Dencher NA, Goto S, Reifschneider NH, Sugawa M, Krause F (2006) Unraveling age-dependent variation of the mitochondrial proteome. Ann N Y Acad Sci 1067:116–119PubMedCrossRefGoogle Scholar
  46. 46.
    Nielsen PA, Olsen JV, Podtelejnikov AV, Andersen JR, Mann M, Wisniewski JR (2005) Proteomic mapping of brain plasma membrane proteins. Mol Cell Proteomics 4(4):402–408PubMedCrossRefGoogle Scholar
  47. 47.
    Lu A, Wisniewski JR, Mann M (2009) Comparative proteomic profiling of membrane proteins in rat cerebellum, spinal cord, and sciatic nerve. J Proteome Res 8(5):2418–2425PubMedCrossRefGoogle Scholar
  48. 48.
    Pottiez G, Flahaut C, Cecchelli R, Karamanos Y (2009) Understanding the blood-brain barrier using gene and protein expression profiling technologies. Brain Res Rev 62(1):83–98PubMedCrossRefGoogle Scholar
  49. 49.
    Pardridge WM (2003) Molecular biology of the blood-brain barrier. Methods Mol Med 89:385–399PubMedGoogle Scholar
  50. 50.
    Pardridge WM (2005) Molecular biology of the blood-brain barrier. Mol Biotechnol 30(1):57–70PubMedCrossRefGoogle Scholar
  51. 51.
    Calabria AR, Shusta EV (2006) Blood-brain barrier genomics and proteomics: elucidating phenotype, identifying disease targets and enabling brain drug delivery. Drug Discov Today 11(17–18):792–799PubMedCrossRefGoogle Scholar
  52. 52.
    Shin JH, Krapfenbauer K, Lubec G (2006) Mass-spectrometrical analysis of proteins encoded on chromosome 21 in human fetal brain. Amino Acids 31(4):435–447PubMedCrossRefGoogle Scholar
  53. 53.
    Pollak DD, John J, Hoeger H, Lubec G (2006) An integrated map of the murine hippocampal proteome based upon five mouse strains. Electrophoresis 27(13):2787–2798PubMedCrossRefGoogle Scholar
  54. 54.
    Saiga T, Fukuda T, Matsumoto M, Tada H, Okano HJ, Okano H, Nakayama KI (2009) Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Mol Cell Biol 29(13):3529–3543PubMedCrossRefGoogle Scholar
  55. 55.
    Jin K, Mao XO, Cottrell B, Schilling B, Xie L, Row RH, Sun Y, Peel A, Childs J, Gendeh G et al (2004) Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis. FASEB J 18(2):287–299PubMedCrossRefGoogle Scholar
  56. 56.
    Svensson M, Skold K, Nilsson A, Falth M, Svenningsson P, Andren PE (2007) Neuropeptidomics: expanding proteomics downwards. Biochem Soc Trans 35(Pt 3):588–593PubMedGoogle Scholar
  57. 57.
    Kim SI, Voshol H, van Oostrum J, Hastings TG, Cascio M, Glucksman MJ (2004) Neuroproteomics: expression profiling of the brain’s proteomes in health and disease. Neurochem Res 29(6):1317–1331PubMedCrossRefGoogle Scholar
  58. 58.
    Fountoulakis M, Kossida S (2006) Proteomics-driven progress in neurodegeneration research. Electrophoresis 27(8):1556–1573PubMedCrossRefGoogle Scholar
  59. 59.
    Kolla V, Jeno P, Moes S, Tercanli S, Lapaire O, Choolani M, Hahn S (2010) Quantitative proteomics analysis of maternal plasma in Down syndrome pregnancies using isobaric tagging reagent (iTRAQ). J Biomed Biotechnol 952047Google Scholar
  60. 60.
    Muntane G, Dalfo E, Martinez A, Rey MJ, Avila J, Perez M, Portero M, Pamplona R, Ayala V, Ferrer I (2006) Glial fibrillary acidic protein is a major target of glycoxidative and lipoxidative damage in Pick’s disease. J Neurochem 99(1):177–185PubMedCrossRefGoogle Scholar
  61. 61.
    Srivastava G, Singh K, Tiwari MN, Singh MP (2010) Proteomics in Parkinson’s disease: current trends, translational snags and future possibilities. Expert Rev Proteomics 7(1):127–139PubMedCrossRefGoogle Scholar
  62. 62.
    van Dijk KD, Teunissen CE, Drukarch B, Jimenez CR, Groenewegen HJ, Berendse HW, van de Berg WD (2010) Diagnostic cerebrospinal fluid biomarkers for Parkinson’s disease: a pathogenetically based approach. Neurobiol DisGoogle Scholar
  63. 63.
    Baloyianni N, Tsangaris GT (2009) The audacity of proteomics: a chance to overcome current challenges in schizophrenia research. Expert Rev Proteomics 6(6):661–674PubMedCrossRefGoogle Scholar
  64. 64.
    Jiang L, Lindpaintner K, Li HF, Gu NF, Langen H, He L, Fountoulakis M (2003) Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia. Amino Acids 25(1):49–57PubMedGoogle Scholar
  65. 65.
    Lakhan SE (2006) Schizophrenia proteomics: biomarkers on the path to laboratory medicine? Diagn Pathol 1:11PubMedCrossRefGoogle Scholar
  66. 66.
    Thaker GK, Carpenter WT Jr (2001) Advances in schizophrenia. Nat Med 7(6):667–671PubMedCrossRefGoogle Scholar
  67. 67.
    Hye A, Lynham S, Thambisetty M, Causevic M, Campbell J, Byers HL, Hooper C, Rijsdijk F, Tabrizi SJ, Banner S et al (2006) Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 129(Pt 11):3042–3050PubMedCrossRefGoogle Scholar
  68. 68.
    Blennow K (2005) CSF biomarkers for Alzheimer’s disease: use in early diagnosis and evaluation of drug treatment. Expert Rev Mol Diagn 5(5):661–672PubMedCrossRefGoogle Scholar
  69. 69.
    German DC, Gurnani P, Nandi A, Garner HR, Fisher W, Diaz-Arrastia R, O’Suilleabhain P, Rosenblatt KP (2007) Serum biomarkers for Alzheimer’s disease: proteomic discovery. Biomed Pharmacother 61(7):383–389PubMedCrossRefGoogle Scholar
  70. 70.
    Kovacech B, Zilka N, Novak M (2009) New age of neuroproteomics in Alzheimer’s disease research. Cell Mol Neurobiol 29(6–7):799–805PubMedCrossRefGoogle Scholar
  71. 71.
    Butterfield DA, Boyd-Kimball D, Castegna A (2003) Proteomics in Alzheimer’s disease: insights into potential mechanisms of neurodegeneration. J Neurochem 86(6):1313–1327PubMedCrossRefGoogle Scholar
  72. 72.
    Lovestone S, Guntert A, Hye A, Lynham S, Thambisetty M, Ward M (2007) Proteomics of Alzheimer’s disease: understanding mechanisms and seeking biomarkers. Expert Rev Proteomics 4(2):227–238PubMedCrossRefGoogle Scholar
  73. 73.
    Korolainen MA, Nyman TA, Aittokallio T, Pirttila T (2010) An update on clinical proteomics in Alzheimer’s research. J Neurochem 112(6):1386–1414PubMedCrossRefGoogle Scholar
  74. 74.
    Holsboer F (2008) How can we realize the promise of personalized antidepressant medicines? Nat Rev Neurosci 9(8):638–646PubMedCrossRefGoogle Scholar
  75. 75.
    Ottervald J, Franzen B, Nilsson K, Andersson LI, Khademi M, Eriksson B, Kjellstrom S, Marko-Varga G, Vegvari A, Harris RA et al. (2010) Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J Proteomics 73(6):1117–1132PubMedCrossRefGoogle Scholar
  76. 76.
    Stoop MP, Dekker LJ, Titulaer MK, Burgers PC, Sillevis Smitt PA, Luider TM, Hintzen RQ (2008) Multiple sclerosis-related proteins identified in cerebrospinal fluid by advanced mass spectrometry. Proteomics 8(8):1576–1585PubMedCrossRefGoogle Scholar
  77. 77.
    Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA (2006) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis 22(1):76–87PubMedCrossRefGoogle Scholar
  78. 78.
    Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545(1):39–50PubMedCrossRefGoogle Scholar
  79. 79.
    Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27(11):1564–1576PubMedCrossRefGoogle Scholar
  80. 80.
    Butterfield DA, Gnjec A, Poon HF, Castegna A, Pierce WM, Klein JB, Martins RN (2006) Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment. J Alzheimers Dis 10(4):391–397PubMedGoogle Scholar
  81. 81.
    Sultana R, Perluigi M, Butterfield DA (2006) Redox proteomics identification of oxidatively modified proteins in Alzheimer’s disease brain and in vivo and in vitro models of AD centered around Abeta (1–42). J Chromatogr B Analyt Technol Biomed Life Sci 833(1):3–11PubMedCrossRefGoogle Scholar
  82. 82.
    Martins-de-Souza D, Harris LW, Guest PC, Turck CW, Bahn S (2009) The role of proteomics in depression research. Eur Arch Psychiatry Clin Neurosci, 2009 Dec 9 [Epub ahead of print]Google Scholar
  83. 83.
    Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J (2010) Proteomic research in psychiatry. J Psychopharmacol, 2010 Feb 16 [Epub ahead of print]Google Scholar
  84. 84.
    Portelius E, Zetterberg H, Gobom J, Andreasson U, Blennow K (2008) Targeted proteomics in Alzheimer’s disease: focus on amyloid-beta. Expert Rev Proteomics 5(2):225–237PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang J, Goodlett DR, Quinn JF, Peskind E, Kaye JA, Zhou Y, Pan C, Yi E, Eng J, Wang Q et al (2005) Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J Alzheimers Dis 7(2):125–133 discussion 173–180PubMedGoogle Scholar
  86. 86.
    Lakhan SE, Kramer A (2009) Schizophrenia genomics and proteomics: are we any closer to biomarker discovery? Behav Brain Funct 5:2PubMedCrossRefGoogle Scholar
  87. 87.
    Stevens SM Jr, Zharikova AD, Prokai L (2003) Proteomic analysis of the synaptic plasma membrane fraction isolated from rat forebrain. Brain Res Mol Brain Res 117(2):116–128PubMedCrossRefGoogle Scholar
  88. 88.
    Li KW, Smit AB (2008) Subcellular proteomics in neuroscience. Front Biosci 13:4416–4425PubMedCrossRefGoogle Scholar
  89. 89.
    Tannu NS, Hemby SE (2006) Methods for proteomics in neuroscience. Prog Brain Res 158:41–82PubMedCrossRefGoogle Scholar
  90. 90.
    Garbis S, Lubec G, Fountoulakis M (2005) Limitations of current proteomics technologies. J Chromatogr A 1077(1):1–18PubMedCrossRefGoogle Scholar
  91. 91.
    Olsen JV, Nielsen PA, Andersen JR, Mann M, Wisniewski JR (2007) Quantitative proteomic profiling of membrane proteins from the mouse brain cortex, hippocampus, and cerebellum using the HysTag reagent: mapping of neurotransmitter receptors and ion channels. Brain Res 1134(1):95–106PubMedCrossRefGoogle Scholar
  92. 92.
    Lemaire R, Stauber J, Wisztorski M, Van Camp C, Desmons A, Deschamps M, Proess G, Rudlof I, Woods AS, Day R et al (2007) Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag. J Proteome Res 6(6):2057–2067PubMedCrossRefGoogle Scholar
  93. 93.
    Yang ZJ, Appleby VJ, Coyle B, Chan WI, Tahmaseb M, Wigmore PM, Scotting PJ (2004) Novel strategy to study gene expression and function in developing cerebellar granule cells. J Neurosci Methods 132(2):149–160PubMedCrossRefGoogle Scholar
  94. 94.
    Ericsson C, Peredo I, Nister M (2007) Optimized protein extraction from cryopreserved brain tissue samples. Acta Oncol 46(1):10–20PubMedCrossRefGoogle Scholar
  95. 95.
    Irmler M, Hartl D, Schmidt T, Schuchhardt J, Lach C, Meyer HE, Hrabe de Angelis M, Klose J, Beckers J (2008) An approach to handling and interpretation of ambiguous data in transcriptome and proteome comparisons. Proteomics 8(6):1165–1169PubMedCrossRefGoogle Scholar
  96. 96.
    Deighton RF, Short DM, McGregor RJ, Gow AJ, Whittle IR, McCulloch J (2009) The utility of functional interaction and cluster analysis in CNS proteomics. J Neurosci Methods 180(2):321–329PubMedCrossRefGoogle Scholar
  97. 97.
    Jones P, Cote RG, Cho SY, Klie S, Martens L, Quinn AF, Thorneycroft D, Hermjakob H (2008) PRIDE: new developments and new datasets. Nucleic Acids Res 36(Database issue):D878–883Google Scholar
  98. 98.
    Schuchhardt J, Glintschert A, Hartl D, Irmler M, Beckers J, Stephan C, Marcus K, Klose J, Meyer HE, Malik A (2008) BrainProfileDB - a platform for integration of functional genomics data. Proteomics 8(6):1162–1164PubMedCrossRefGoogle Scholar
  99. 99.
    Hamacher M, Stephan C, Eisenacher M, Hardt T, Marcus K, Meyer HE (2008) Maintaining standardization: an update of the HUPO Brain Proteome Project. Expert Rev Proteomics 5(2):165–173PubMedCrossRefGoogle Scholar
  100. 100.
    Reidegeld KA, Muller M, Stephan C, Bluggel M, Hamacher M, Martens L, Korting G, Chamrad DC, Parkinson D, Apweiler R et al (2006) The power of cooperative investigation: summary and comparison of the HUPO Brain Proteome Project pilot study results. Proteomics 6(18):4997–5014PubMedCrossRefGoogle Scholar
  101. 101.
    Bluggel M, Bailey S, Korting G, Stephan C, Reidegeld KA, Thiele H, Apweiler R, Hamacher M, Meyer HE (2004) Towards data management of the HUPO Human Brain Proteome Project pilot phase. Proteomics 4(8):2361–2362PubMedCrossRefGoogle Scholar
  102. 102.
    Hamacher M, Apweiler R, Arnold G, Becker A, Bluggel M, Carrette O, Colvis C, Dunn MJ, Frohlich T, Fountoulakis M et al (2006) HUPO Brain Proteome Project: summary of the pilot phase and introduction of a comprehensive data reprocessing strategy. Proteomics 6(18):4890–4898PubMedCrossRefGoogle Scholar
  103. 103.
    Hamacher M, Marcus K, van Hall A, Meyer HE, Stephan C (2006) The HUPO Brain Proteome Project–no need to hurry? J Neural Transm 113(8):963–971PubMedCrossRefGoogle Scholar
  104. 104.
    Hamacher M, Meyer HE (2005) HUPO Brain Proteome Project: aims and needs in proteomics. Expert Rev Proteomics 2(1):1–3PubMedCrossRefGoogle Scholar
  105. 105.
    Hamacher M, Marcus K, Stephan C, Klose J, Park YM, Meyer HE (2008) HUPO Brain Proteome Project: toward a code of conduct. Mol Cell Proteomics 7(2):457PubMedGoogle Scholar
  106. 106.
    Stuhler K, Pfeiffer K, Joppich C, Stephan C, Jung K, Muller M, Schmidt O, van Hall A, Hamacher M, Urfer W et al (2006) Pilot study of the Human Proteome Organisation Brain Proteome Project: applying different 2-DE techniques to monitor proteomic changes during murine brain development. Proteomics 6(18):4899–4913PubMedCrossRefGoogle Scholar
  107. 107.
    Focking M, Boersema PJ, O’Donoghue N, Lubec G, Pennington SR, Cotter DR, Dunn MJ (2006) 2-D DIGE as a quantitative tool for investigating the HUPO Brain Proteome Project mouse series. Proteomics 6(18):4914–4931PubMedCrossRefGoogle Scholar
  108. 108.
    Mueller M, Martens L, Reidegeld KA, Hamacher M, Stephan C, Bluggel M, Korting G, Chamrad D, Scheer C, Marcus K et al (2006) Functional annotation of proteins identified in human brain during the HUPO Brain Proteome Project pilot study. Proteomics 6(18):5059–5075PubMedCrossRefGoogle Scholar
  109. 109.
    Stephan C, Reidegeld KA, Hamacher M, van Hall A, Marcus K, Taylor C, Jones P, Muller M, Apweiler R, Martens L et al (2006) Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Proteome Project pilot phase. Proteomics 6(18):5015–5029PubMedCrossRefGoogle Scholar
  110. 110.
    Dowsey AW, English J, Pennington K, Cotter D, Stuehler K, Marcus K, Meyer HE, Dunn MJ, Yang GZ (2006) Examination of 2-DE in the Human Proteome Organisation Brain Proteome Project pilot studies with the new RAIN gel matching technique. Proteomics 6(18):5030–5047PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Beijing Institute of Radiation Medicine, State Key Laboratory of ProteomicsBeijingChina

Personalised recommendations