Neurochemical Research

, Volume 35, Issue 10, pp 1530–1537

The Role of Oxidative Stress in Amyotrophic Lateral Sclerosis and Parkinson’s Disease

  • Athan Baillet
  • Vanessa Chanteperdrix
  • Candice Trocmé
  • Pierre Casez
  • Catherine Garrel
  • Gérard Besson


We examined oxidative stress markers of 31 patients suffering from ALS, 24 patients suffering from PD and 30 healthy subjects were included. We determined the plasma levels of lipid peroxidation (malondialdehyde, MDA), of protein oxidative lesions (plasma glutathione, carbonyls and thiols) and the activity of antioxidant enzymes i.e. erythrocyte Cu,Zn-Superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) and catalase. MDA and thiols were significantly different in both neurodegenerative diseases versus control population. A trend for an enhancement of oxidized glutathione was noted in ALS patients. Univariate analysis showed that SOD activity was significantly decreased in ALS and GSH-Px activity was decreased in PD. After adjusting for demographic parameters and enzyme cofactors, we could emphasize a compensatory increase of SOD activity in PD. Different antioxidant systems were not involved in the same way in ALS and PD, suggesting that oxidative stress may be a cause rather than a consequence of the neuronal death.


Oxidative stress Reactive oxygen species Neurodegeneration Trace element Amyotrophic lateral sclerosis Parkinson’s disease Glutathione peroxidase Superoxide dismutase 



Amyotrophic lateral sclerosis


Ethylenediaminetetraacetic acid


Glutathione peroxidase




3-N-morpholinopropaneslfonic acid


Parkinson’s disease


Cu,Zn-Superoxide dismutase


  1. 1.
    Evans PH, Yano E, Klinowski J et al (1992) Oxidative damage in Alzheimer’s dementia, and the potential etiopathogenic role of aluminosilicates, microglia and micronutrient interactions. Exs 62:178–189PubMedGoogle Scholar
  2. 2.
    Facheris M, Beretta S, Ferrarese C (2004) Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: tools for diagnosis and therapy? J Alzheimers Dis 6:177–184PubMedGoogle Scholar
  3. 3.
    Bonnefont-Rousselot D, Lacomblez L, Jaudon M et al (2000) Blood oxidative stress in amyotrophic lateral sclerosis. J Neurol Sci 178:57–62CrossRefPubMedGoogle Scholar
  4. 4.
    Siciliano G, D’Avino C, Del Corona A et al (2002) Impaired oxidative metabolism and lipid peroxidation in exercising muscle from ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 3:57–62CrossRefPubMedGoogle Scholar
  5. 5.
    Jenner P, Dexter DT, Sian J et al (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):S82–S87Google Scholar
  6. 6.
    Jenner P, Schapira AH, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42:2241–2250PubMedGoogle Scholar
  7. 7.
    Schapira AH, Mann VM, Cooper JM et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145CrossRefPubMedGoogle Scholar
  8. 8.
    Janetzky B, Hauck S, Youdim MB et al (1994) Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neurosci Lett 169:126–128CrossRefPubMedGoogle Scholar
  9. 9.
    Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723CrossRefPubMedGoogle Scholar
  10. 10.
    Singer TP, Castagnoli N Jr, Ramsay RR et al (1987) Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J Neurochem 49:1–8CrossRefPubMedGoogle Scholar
  11. 11.
    Przedborski S, Jackson-Lewis V, Djaldetti R et al (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142PubMedGoogle Scholar
  12. 12.
    Greenamyre JT, Sherer TB, Betarbet R et al (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141CrossRefPubMedGoogle Scholar
  13. 13.
    Agil A, Duran R, Barrero F et al (2006) Plasma lipid peroxidation in sporadic Parkinson’s disease. Role of the L-dopa. J Neurol Sci 240:31–36CrossRefPubMedGoogle Scholar
  14. 14.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62CrossRefPubMedGoogle Scholar
  15. 15.
    Oteiza PI, Uchitel OD, Carrasquedo F et al (1997) Evaluation of antioxidants, protein, and lipid oxidation products in blood from sporadic amyotrophic lateral sclerosis patients. Neurochem Res 22:535–539CrossRefPubMedGoogle Scholar
  16. 16.
    Bogdanov M, Brown RH, Matson W et al (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29:652–658CrossRefPubMedGoogle Scholar
  17. 17.
    Beal MF, Ferrante RJ, Browne SE et al (1997) Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis. Ann Neurol 42:644–654CrossRefPubMedGoogle Scholar
  18. 18.
    Shibata N, Nagai R, Uchida K et al (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917:97–104CrossRefPubMedGoogle Scholar
  19. 19.
    Cookson MR, Shaw PJ (1999) Oxidative stress and motor neurone disease. Brain Pathol 9:165–186CrossRefPubMedGoogle Scholar
  20. 20.
    Grundman M (2000) Vitamin E and Alzheimer disease: the basis for additional clinical trials. Am J Clin Nutr 71:630S–636SPubMedGoogle Scholar
  21. 21.
    Sano M, Ernesto C, Thomas RG et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 336:1216–1222CrossRefPubMedGoogle Scholar
  22. 22.
    Ascherio A, Weisskopf MG, O’Reilly EJ et al (2005) Vitamin E intake and risk of amyotrophic lateral sclerosis. Ann Neurol 57:104–110CrossRefPubMedGoogle Scholar
  23. 23.
    Desnuelle C, Dib M, Garrel C et al (2001) A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2:9–18CrossRefPubMedGoogle Scholar
  24. 24.
    Group TPS (1996) Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Parkinson Study Group. Ann Neurol 39:37–45CrossRefGoogle Scholar
  25. 25.
    Group PS (1993) Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. The Parkinson Study Group. N Engl J Med 328:176–183CrossRefGoogle Scholar
  26. 26.
    Fukunaga K, Yoshida M, Nakazono N (1998) A simple, rapid, highly sensitive and reproducible quantification method for plasma malondialdehyde by high-performance liquid chromatography. Biomed Chromatogr 12:300–303CrossRefPubMedGoogle Scholar
  27. 27.
    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77CrossRefPubMedGoogle Scholar
  28. 28.
    Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefPubMedGoogle Scholar
  29. 29.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474CrossRefPubMedGoogle Scholar
  30. 30.
    Richard MJ, Belleville F, Chalas J et al (1997) Glutathione peroxidases: value of their determination in clinical biology. Ann Biol Clin (Paris) 55:195–207Google Scholar
  31. 31.
    Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424CrossRefPubMedGoogle Scholar
  32. 32.
    Rowland LP (2000) Six important themes in amyotrophic lateral sclerosis (ALS) research, 1999. J Neurol Sci 180:2–6CrossRefPubMedGoogle Scholar
  33. 33.
    Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303CrossRefPubMedGoogle Scholar
  34. 34.
    Martignoni E, Blandini F, Godi L et al (1999) Peripheral markers of oxidative stress in Parkinson’s disease. The role of L-DOPA. Free Radic Biol Med 27:428–437CrossRefPubMedGoogle Scholar
  35. 35.
    Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144CrossRefPubMedGoogle Scholar
  36. 36.
    Saraymen R, Kilic E, Yazar S et al (2003) Influence of sex and age on the activity of antioxidant enzymes of polymorphonuclear leukocytes in healthy subjects. Yonsei Med J 44:9–14PubMedGoogle Scholar
  37. 37.
    Kawamoto EM, Munhoz CD, Glezer I et al (2005) Oxidative state in platelets and erythrocytes in aging and Alzheimer’s disease. Neurobiol Aging 26:857–864CrossRefPubMedGoogle Scholar
  38. 38.
    Bracco F, Scarpa M, Rigo A et al (1991) Determination of superoxide dismutase activity by the polarographic method of catalytic currents in the cerebrospinal fluid of aging brain and neurologic degenerative diseases. Proc Soc Exp Biol Med 196:36–41PubMedGoogle Scholar
  39. 39.
    Barthwal MK, Srivastava N, Shukla R et al (1999) Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson’s disease patients. Acta Neurol Scand 100:300–304CrossRefPubMedGoogle Scholar
  40. 40.
    Sudha K, Rao AV, Rao S et al (2003) Free radical toxicity and antioxidants in Parkinson’s disease. Neurol India 51:60–62PubMedGoogle Scholar
  41. 41.
    Bao B, Prasad AS, Beck FW et al (2008) Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 152:67–80CrossRefPubMedGoogle Scholar
  42. 42.
    Prasad AS, Beck FW, Bao B et al (2007) Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 85:837–844PubMedGoogle Scholar
  43. 43.
    Taysi S, Cikman O, Kaya A et al (2008) Increased oxidant stress and decreased antioxidant status in erythrocytes of rats fed with zinc-deficient diet. Biol Trace Elem Res 123:161–167CrossRefPubMedGoogle Scholar
  44. 44.
    Messaoudi I, El Heni J, Hammouda F et al (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161CrossRefPubMedGoogle Scholar
  45. 45.
    Alexandrova A, Kebis A, Misl’anova C et al (2007) Copper impairs biliary epithelial cells and induces protein oxidation and oxidative DNA damage in the isolated perfused rat liver. Exp Toxicol Pathol 58:255–261CrossRefPubMedGoogle Scholar
  46. 46.
    Kish SJ, Morito C, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci Lett 58:343–346CrossRefPubMedGoogle Scholar
  47. 47.
    Gil L, Siems W, Mazurek B et al (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radic Res 40:495–505CrossRefPubMedGoogle Scholar
  48. 48.
    Mehmetcik G, Alptekin N, Toker G et al (1997) Mitochondrial lipid peroxides and antioxidant enzymes in the liver following phorone-induced glutathione depletion. Res Commun Mol Pathol Pharmacol 96:353–356PubMedGoogle Scholar
  49. 49.
    Rondanelli M, Melzi d’Eril GV, Anesi A, Ferrari E (1997) Altered oxidative stress in healthy old subjects. Aging (Milano) 9:221–223Google Scholar
  50. 50.
    Przedborski S, Donaldson DM, Murphy PL et al (1996) Blood superoxide dismutase, catalase and glutathione peroxidase activities in familial and sporadic amyotrophic lateral sclerosis. Neurodegeneration 5:57–64CrossRefPubMedGoogle Scholar
  51. 51.
    Storch A, Jost WH, Vieregge P et al (2007) Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol 64:938–944CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Athan Baillet
    • 1
    • 5
  • Vanessa Chanteperdrix
    • 2
  • Candice Trocmé
    • 3
  • Pierre Casez
    • 4
  • Catherine Garrel
    • 2
  • Gérard Besson
    • 1
  1. 1.Neurology DepartmentHôpital A. MichallonGrenoble Cedex 9France
  2. 2.Biology DepartmentHôpital A MichallonGrenoble Cedex 9France
  3. 3.Laboratory of Enzymology/DBPCCHU Hôpital MichallonGrenoble Cedex 9France
  4. 4.Medical Information UnitA. MichallonGrenoble Cedex 9France
  5. 5.Grenoble UniversityHôpital A. MichallonGrenoble Cedex 9France

Personalised recommendations