Advertisement

Neurochemical Research

, Volume 34, Issue 10, pp 1830–1837 | Cite as

The Low Affinity Dopamine Binding Site on Tyrosine Hydroxylase: The Role of the N-Terminus and In Situ Regulation of Enzyme Activity

  • Sarah L. Gordon
  • Julianne K. Webb
  • Jacqueline Shehadeh
  • Peter R. Dunkley
  • Phillip W. Dickson
Original Paper

Abstract

Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is inhibited in vitro by catecholamines binding to two distinct sites on the enzyme. The N-terminal regulatory domain of TH contributes to dopamine binding to the high affinity site of the enzyme. We prepared an N-terminal deletion mutant of TH to examine the role of the N-terminal domain in dopamine binding to the low affinity site. Deletion of the N-terminus of TH removes the high affinity dopamine binding site, but does not affect dopamine binding to the low affinity site. The role of the low affinity site in situ was examined by incubating PC12 cells with L-DOPA to increase the cytosolic catecholamine concentration. This resulted in an inhibition of TH activity in situ under both basal conditions and conditions that promoted the phosphorylation of Ser40. Therefore the low affinity site is active in situ regardless of the phosphorylation status of Ser40.

Keywords

Tyrosine hydroxylase Dopamine Catecholamines Feedback inhibition In situ Phosphorylation 

Notes

Acknowledgments

This work was supported by a grant from the National Health and Medical Research Council (No. 455547).

References

  1. 1.
    Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917PubMedGoogle Scholar
  2. 2.
    Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67:443–462PubMedGoogle Scholar
  3. 3.
    Dunkley PR, Bobrovskaya L, Graham ME et al (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91:1025–1043. doi: 10.1111/j.1471-4159.2004.02797.x PubMedCrossRefGoogle Scholar
  4. 4.
    Gordon SL, Quinsey NS, Dunkley PR et al (2008) Tyrosine hydroxylase activity is regulated by two distinct dopamine-binding sites. J Neurochem 106:1614–1623PubMedGoogle Scholar
  5. 5.
    Andersson KK, Vassort C, Brennan BA et al (1992) Purification and characterization of the blue-green rat phaeochromocytoma (PC12) tyrosine hydroxylase with a dopamine-Fe(III) complex. Reversal of the endogenous feedback inhibition by phosphorylation of serine-40. Biochem J 284(Pt 3):687–695PubMedGoogle Scholar
  6. 6.
    Daubner SC, Lauriano C, Haycock JW et al (1992) Site-directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP-dependent phosphorylation on enzyme activity. J Biol Chem 267:12639–12646PubMedGoogle Scholar
  7. 7.
    Ramsey AJ, Fitzpatrick PF (1998) Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37:8980–8986. doi: 10.1021/bi980582l PubMedCrossRefGoogle Scholar
  8. 8.
    Mosharov EV, Staal RG, Bove J et al (2006) Alpha-synuclein overexpression increases cytosolic catecholamine concentration. J Neurosci 26:9304–9311. doi: 10.1523/JNEUROSCI.0519-06.2006 PubMedCrossRefGoogle Scholar
  9. 9.
    Cammarota M, Bevilaqua LR, Rostas JA et al (2003) Histamine activates tyrosine hydroxylase in bovine adrenal chromaffin cells through a pathway that involves ERK1/2 but not p38 or JNK. J Neurochem 84:453–458. doi: 10.1046/j.1471-4159.2003.01517.x PubMedCrossRefGoogle Scholar
  10. 10.
    Lehmann IT, Bobrovskaya L, Gordon SL et al (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281:17644–17651. doi: 10.1074/jbc.M512194200 PubMedCrossRefGoogle Scholar
  11. 11.
    Bevilaqua LR, Graham ME, Dunkley PR et al (2001) Phosphorylation of Ser(19) alters the conformation of tyrosine hydroxylase to increase the rate of phosphorylation of Ser(40). J Biol Chem 276:40411–40416. doi: 10.1074/jbc.M105280200 PubMedCrossRefGoogle Scholar
  12. 12.
    Howlett GJ, Yeh E, Schachman HK (1978) Protein-ligand binding studies with a table-top, air-driven high-speed centrifuge. Arch Biochem Biophys 190:808–819. doi: 10.1016/0003-9861(78)90341-7 PubMedCrossRefGoogle Scholar
  13. 13.
    Reinhard JF Jr, Smith GK, Nichol CA (1986) A rapid and sensitive assay for tyrosine-3-monooxygenase based upon the release of 3H2O and adsorption of [3H]-tyrosine by charcoal. Life Sci 39:2185–2189. doi: 10.1016/0024-3205(86)90395-4 PubMedCrossRefGoogle Scholar
  14. 14.
    Bobrovskaya L, Cheah TB, Bunn SJ et al (1998) Tyrosine hydroxylase in bovine adrenal chromaffin cells: angiotensin II-stimulated activity and phosphorylation of Ser19, Ser31, and Ser40. J Neurochem 70:2565–2573PubMedGoogle Scholar
  15. 15.
    Jarvie PE, Dunkley PR (1995) Characterization of calcium/calmodulin-stimulated protein kinase II. Methods Mol Biol 41:239–259PubMedGoogle Scholar
  16. 16.
    Bobrovskaya L, Dunkley PR, Dickson PW (2004) Phosphorylation of Ser19 increases both Ser40 phosphorylation and enzyme activity of tyrosine hydroxylase in intact cells. J Neurochem 90:857–864. doi: 10.1111/j.1471-4159.2004.02550.x PubMedCrossRefGoogle Scholar
  17. 17.
    Sura GR, Daubner SC, Fitzpatrick PF (2004) Effects of phosphorylation by protein kinase A on binding of catecholamines to the human tyrosine hydroxylase isoforms. J Neurochem 90:970–978. doi: 10.1111/j.1471-4159.2004.02566.x PubMedCrossRefGoogle Scholar
  18. 18.
    Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672. doi: 10.1111/j.1749-6632.1949.tb27297.x CrossRefGoogle Scholar
  19. 19.
    Mosharov EV, Gong LW, Khanna B et al (2003) Intracellular patch electrochemistry: regulation of cytosolic catecholamines in chromaffin cells. J Neurosci 23:5835–5845PubMedGoogle Scholar
  20. 20.
    Haycock JW (1993) Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochem Res 18:15–26. doi: 10.1007/BF00966919 PubMedCrossRefGoogle Scholar
  21. 21.
    Haycock JW (1990) Phosphorylation of tyrosine hydroxylase in situ at serine 8, 19, 31, and 40. J Biol Chem 265:11682–11691PubMedGoogle Scholar
  22. 22.
    Walkinshaw G, Waters CM (1995) Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease. J Clin Invest 95:2458–2464. doi: 10.1172/JCI117946 PubMedCrossRefGoogle Scholar
  23. 23.
    Koshimura K, Tanaka J, Murakami Y et al (2000) Effects of dopamine and L-DOPA on survival of PC12 cells. J Neurosci Res 62:112–119. doi: 10.1002/1097-4547(20001001)62:1<112::AID-JNR12>3.0.CO;2-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Basma AN, Morris EJ, Nicklas WJ et al (1995) L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation. J Neurochem 64:825–832PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang J, Kravtsov V, Amarnath V et al (2000) Enhancement of dopaminergic neurotoxicity by the mercapturate of dopamine: relevance to Parkinson’s disease. J Neurochem 74:970–978. doi: 10.1046/j.1471-4159.2000.0740970.x PubMedCrossRefGoogle Scholar
  26. 26.
    Ribeiro P, Wang Y, Citron BA et al (1993) Deletion mutagenesis of rat PC12 tyrosine hydroxylase regulatory and catalytic domains. J Mol Neurosci 4:125–139. doi: 10.1007/BF02782125 PubMedCrossRefGoogle Scholar
  27. 27.
    Ota A, Nakashima A, Mori K et al (1997) Effects of dopamine on N-terminus-deleted human tyrosine hydroxylase type 1 expressed in Escherichia coli. Neurosci Lett 229:57–60. doi: 10.1016/S0304-3940(97)00418-7 PubMedCrossRefGoogle Scholar
  28. 28.
    Nakashima A, Mori K, Suzuki T et al (1999) Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J Neurochem 72:2145–2153. doi: 10.1046/j.1471-4159.1999.0722145.x PubMedCrossRefGoogle Scholar
  29. 29.
    Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665. doi: 10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C PubMedCrossRefGoogle Scholar
  30. 30.
    Youdim MB, Bakhle YS (2006) Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 147(Suppl 1):S287–S296. doi: 10.1038/sj.bjp.0706464 PubMedCrossRefGoogle Scholar
  31. 31.
    Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36. doi: 10.1002/ana.10483 discussion S36–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sarah L. Gordon
    • 1
  • Julianne K. Webb
    • 1
  • Jacqueline Shehadeh
    • 1
  • Peter R. Dunkley
    • 1
  • Phillip W. Dickson
    • 1
  1. 1.School of Biomedical Sciences and The Hunter Medical Research Institute, Faculty of HealthThe University of NewcastleCallaghanAustralia

Personalised recommendations