Neurochemical Research

, Volume 34, Issue 10, pp 1838–1846

Modulation of α-Synuclein Aggregation by Dopamine: A Review

  • Su Ling Leong
  • Roberto Cappai
  • Kevin Jeffrey Barnham
  • Chi Le Lan Pham
Review Article


Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by (1) the selective loss of dopaminergic neurons in the substantia nigra and (2) the deposition of misfolded α-synuclein (α-syn) as amyloid fibrils in the intracellular Lewy bodies in various region of the brain. Current thinking suggests that an interaction between α-syn and dopamine (DA) leads to the selective death of neuronal cells and the accumulation of misfolded α-syn. However, the exact mechanism by which this occurs is not fully defined. DA oxidation could play a key role is the pathogenesis of PD by causing oxidative stress, mitochondria dysfunction and impairment of protein metabolism. Here, we review the literature on the role of DA and its oxidative intermediates in modulating the aggregation pathways of α-syn.


α-synuclein Dopamine Parkinson’s disease Oligomers Amyloid fibrils 


  1. 1.
    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932–942. doi:10.1038/nrn983 PubMedCrossRefGoogle Scholar
  2. 2.
    Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(Review issue 2):R183–R194. doi:10.1093/hmg/ddm159 PubMedCrossRefGoogle Scholar
  3. 3.
    Pakkenberg B, Moller A, Gundersen HJ et al (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33. doi:10.1136/jnnp.54.1.30 PubMedCrossRefGoogle Scholar
  4. 4.
    Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. doi:10.1016/S0197-4580(02)00065-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. doi:10.1038/42166 PubMedCrossRefGoogle Scholar
  6. 6.
    Spillantini MG, Crowther RA, Jakes R et al (1998) Alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95:6469–6473. doi:10.1073/pnas.95.11.6469 PubMedCrossRefGoogle Scholar
  7. 7.
    Wakabayashi K, Tanji K, Mori F, Takahashi H (2007) The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 27:494–506. doi:10.1111/j.1440-1789.2007.00803.x PubMedCrossRefGoogle Scholar
  8. 8.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047. doi:10.1126/science.276.5321.2045 PubMedCrossRefGoogle Scholar
  9. 9.
    Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108. doi:10.1038/ng0298-106 PubMedCrossRefGoogle Scholar
  10. 10.
    Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841. doi:10.1126/science.1090278 PubMedCrossRefGoogle Scholar
  11. 11.
    Zarranz JJ, Alegre J, Gomez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173. doi:10.1002/ana.10795 PubMedCrossRefGoogle Scholar
  12. 12.
    Chartier-Harlin MC, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169. doi:10.1016/S0140-6736(04)17103-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Davidson WS, Jonas A, Clayton DF et al (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449. doi:10.1074/jbc.273.16.9443 PubMedCrossRefGoogle Scholar
  14. 14.
    Eliezer D, Kutluay E, Bussell R Jr et al (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307:1061–1073. doi:10.1006/jmbi.2001.4538 PubMedCrossRefGoogle Scholar
  15. 15.
    Chandra S, Chen X, Rizo J et al (2003) A broken alpha-helix in folded alpha-synuclein. J Biol Chem 278:15313–15318. doi:10.1074/jbc.M213128200 PubMedCrossRefGoogle Scholar
  16. 16.
    Ueda K, Fukushima H, Masliah E et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286. doi:10.1073/pnas.90.23.11282 PubMedCrossRefGoogle Scholar
  17. 17.
    Culvenor JG, McLean CA, Cutt S et al (1999) Non-Abeta component of Alzheimer’s disease amyloid (NAC) revisited. NAC and alpha-synuclein are not associated with Abeta amyloid. Am J Pathol 155:1173–1181PubMedGoogle Scholar
  18. 18.
    Giasson BI, Murray IV, Trojanowski JQ et al (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386. doi:10.1074/jbc.M008919200 PubMedCrossRefGoogle Scholar
  19. 19.
    Perez RG, Waymire JC, Lin E et al (2002) A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090–3099PubMedGoogle Scholar
  20. 20.
    Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43–49. doi:10.1016/0165-6147(93)90029-J PubMedCrossRefGoogle Scholar
  21. 21.
    Abeliovich A, Schmitz Y, Farinas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252. doi:10.1016/S0896-6273(00)80886-7 PubMedCrossRefGoogle Scholar
  22. 22.
    Larsen KE, Schmitz Y, Troyer MD et al (2006) Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915–11922. doi:10.1523/JNEUROSCI.3821-06.2006 PubMedCrossRefGoogle Scholar
  23. 23.
    Galvin JE (2006) Interaction of alpha-synuclein and dopamine metabolites in the pathogenesis of Parkinson’s disease: a case for the selective vulnerability of the substantia nigra. Acta Neuropathol 112:115–126. doi:10.1007/s00401-006-0096-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Sulzer D, Bogulavsky J, Larsen KE et al (2000) Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 97:11869–11874. doi:10.1073/pnas.97.22.11869 PubMedCrossRefGoogle Scholar
  25. 25.
    Graham DG, Tiffany SM, Bell WR et al (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653PubMedGoogle Scholar
  26. 26.
    Zecca L, Zucca FA, Wilms H et al (2003) Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 26:578–580. doi:10.1016/j.tins.2003.08.009 PubMedCrossRefGoogle Scholar
  27. 27.
    Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in parkinson’s disease. Nature 334:345–348. doi:10.1038/334345a0 PubMedCrossRefGoogle Scholar
  28. 28.
    Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605. doi:10.1074/jbc.M610893200 PubMedCrossRefGoogle Scholar
  29. 29.
    Li SW, Lin TS, Minteer S et al (2001) 3, 4-dihydroxyphenylacetaldehyde and hydrogen peroxide generate a hydroxyl radical: possible role in Parkinson’s disease pathogenesis. Brain Res Mol Brain Res 93:1–7. doi:10.1016/S0169-328X(01)00120-6 PubMedCrossRefGoogle Scholar
  30. 30.
    Pham CLL, Leong SL, Ali FE et al (2009) Dopamine and the dopamine oxidation product 5, 6-dihydroxylindole promote distinct on-pathway and off-pathway aggregation of α-synuclein in a ph-dependent manner. J Mol Biol 387:771–785. doi:10.1016/j.jmb.2009.02.007 PubMedCrossRefGoogle Scholar
  31. 31.
    Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320. doi:10.1038/3311 PubMedCrossRefGoogle Scholar
  32. 32.
    Wood SJ, Wypych J, Steavenson S et al (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–19512. doi:10.1074/jbc.274.28.19509 PubMedCrossRefGoogle Scholar
  33. 33.
    Harper JD, Lansbury PT Jr (1997) Models of amyloid seeding in alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407. doi:10.1146/annurev.biochem.66.1.385 PubMedCrossRefGoogle Scholar
  34. 34.
    Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103:17–37PubMedGoogle Scholar
  35. 35.
    Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744. doi:10.1074/jbc.M010907200 PubMedCrossRefGoogle Scholar
  36. 36.
    Uversky VN, Lee HJ, Li J et al (2001) Stabilization of partially folded conformation during alpha-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276:43495–43498. doi:10.1074/jbc.C100551200 PubMedCrossRefGoogle Scholar
  37. 37.
    Hoyer W, Antony T, Cherny D et al (2002) Dependence of alpha-synuclein aggregate morphology on solution conditions. J Mol Biol 322:383–393. doi:10.1016/S0022-2836(02)00775-1 PubMedCrossRefGoogle Scholar
  38. 38.
    Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296. doi:10.1074/jbc.M105343200 PubMedCrossRefGoogle Scholar
  39. 39.
    Uversky VN, Yamin G, Souillac PO et al (2002) Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 517:239–244. doi:10.1016/S0014-5793(02)02638-8 PubMedCrossRefGoogle Scholar
  40. 40.
    Leong SL, Pham CLL, Galatis D et al (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46:1328–1337. doi:10.1016/j.freeradbiomed.2009.02.009 PubMedCrossRefGoogle Scholar
  41. 41.
    Uversky VN, Yamin G, Munishkina LA et al (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134:84–102. doi:10.1016/j.molbrainres.2004.11.014 PubMedCrossRefGoogle Scholar
  42. 42.
    Yamin G, Uversky VN, Fink AL (2003) Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Lett 542:147–152. doi:10.1016/S0014-5793(03)00367-3 PubMedCrossRefGoogle Scholar
  43. 43.
    Kayed R, Head E, Thompson JL et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489. doi:10.1126/science.1079469 PubMedCrossRefGoogle Scholar
  44. 44.
    Bucciantini M, Giannoni E, Chiti F et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511. doi:10.1038/416507a PubMedCrossRefGoogle Scholar
  45. 45.
    Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298. doi:10.1146/annurev.neuro.26.010302.081142 PubMedCrossRefGoogle Scholar
  46. 46.
    Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453. doi:10.1073/pnas.95.11.6448 PubMedCrossRefGoogle Scholar
  47. 47.
    Conway KA, Lee SJ, Rochet JC et al (2000) Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920:42–45PubMedCrossRefGoogle Scholar
  48. 48.
    Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39:2552–2563. doi:10.1021/bi991447r PubMedCrossRefGoogle Scholar
  49. 49.
    Greenbaum EA, Graves CL, Mishizen-Eberz AJ et al (2005) The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 280:7800–7807. doi:10.1074/jbc.M411638200 PubMedCrossRefGoogle Scholar
  50. 50.
    Smith DP, Tew DJ, Hill AF et al (2008) Formation of a high affinity lipid-binding intermediate during the early aggregation phase of alpha-synuclein. Biochemistry 47:1425–1434. doi:10.1021/bi701522m PubMedCrossRefGoogle Scholar
  51. 51.
    Tabrizi SJ, Orth M, Wilkinson JM et al (2000) Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity. Hum Mol Genet 9:2683–2689. doi:10.1093/hmg/9.18.2683 PubMedCrossRefGoogle Scholar
  52. 52.
    Narhi L, Wood SJ, Steavenson S et al (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274:9843–9846. doi:10.1074/jbc.274.14.9843 PubMedCrossRefGoogle Scholar
  53. 53.
    Conway KA, Lee SJ, Rochet JC et al (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576. doi:10.1073/pnas.97.2.571 PubMedCrossRefGoogle Scholar
  54. 54.
    Li J, Uversky VN, Fink AL (2001) Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40:11604–11613. doi:10.1021/bi010616g PubMedCrossRefGoogle Scholar
  55. 55.
    Rochet JC, Conway KA, Lansbury PT Jr (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 39:10619–10626. doi:10.1021/bi001315u PubMedCrossRefGoogle Scholar
  56. 56.
    Lashuel HA, Hartley D, Petre BM et al (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291. doi:10.1038/418291a PubMedCrossRefGoogle Scholar
  57. 57.
    Lashuel HA, Petre BM, Wall J et al (2002) Alpha-synuclein, especially the parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102. doi:10.1016/S0022-2836(02)00735-0 PubMedCrossRefGoogle Scholar
  58. 58.
    Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602. doi:10.1021/bi0121353 PubMedCrossRefGoogle Scholar
  59. 59.
    Pountney DL, Voelcker NH, Gai WP (2005) Annular alpha-synuclein oligomers are potentially toxic agents in alpha-synucleinopathy. Hypothesis. Neurotox Res 7:59–67PubMedCrossRefGoogle Scholar
  60. 60.
    Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232. doi:10.1523/JNEUROSCI.2617-07.2007 PubMedCrossRefGoogle Scholar
  61. 61.
    Emmanouilidou E, Stefanis L, Vekrellis K (2008) Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.07.008
  62. 62.
    Cappai R, Leck SL, Tew DJ et al (2005) Dopamine promotes alpha-synuclein aggregation into SDS-resistant soluble oligomers via a distinct folding pathway. FASEB J 19:1377–1379PubMedGoogle Scholar
  63. 63.
    Li J, Zhu M, Manning-Bog AB et al (2004) Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson’s and Alzheimer’s disease. FASEB J 18:962–964. doi:10.1096/fj.04-2273com PubMedCrossRefGoogle Scholar
  64. 64.
    Norris EH, Giasson BI, Hodara R et al (2005) Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219. doi:10.1074/jbc.M412621200 PubMedCrossRefGoogle Scholar
  65. 65.
    Kuhn DM, Arthur RE Jr, Thomas DM et al (1999) Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease. J Neurochem 73:1309–1317. doi:10.1046/j.1471-4159.1999.0731309.x PubMedCrossRefGoogle Scholar
  66. 66.
    Xu Y, Stokes AH, Roskoski R Jr et al (1998) Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. J Neurosci Res 54:691–697. doi:10.1002/(SICI)1097-4547(19981201)54:5<691::AID-JNR14>3.0.CO;2-F PubMedCrossRefGoogle Scholar
  67. 67.
    Whitehead RE, Ferrer JV, Javitch JA et al (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251. doi:10.1046/j.1471-4159.2001.00125.x PubMedCrossRefGoogle Scholar
  68. 68.
    Moussa CE, Mahmoodian F, Tomita Y et al (2008) Dopamine differentially induces aggregation of A53T mutant and wild type alpha-synuclein: insights into the protein chemistry of Parkinson’s disease. Biochem Biophys Res Commun 365:833–839. doi:10.1016/j.bbrc.2007.11.075 PubMedCrossRefGoogle Scholar
  69. 69.
    Mazzulli JR, Mishizen AJ, Giasson BI et al (2006) Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 26:10068–10078. doi:10.1523/JNEUROSCI.0896-06.2006 PubMedCrossRefGoogle Scholar
  70. 70.
    Follmer C, Romao L, Einsiedler CM et al (2007) Dopamine affects the stability, hydration, and packing of protofibrils and fibrils of the wild type and variants of alpha-synuclein. Biochemistry 46:472–482. doi:10.1021/bi061871+ PubMedCrossRefGoogle Scholar
  71. 71.
    Conway KA, Rochet JC, Bieganski RM et al (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349. doi:10.1126/science.1063522 PubMedCrossRefGoogle Scholar
  72. 72.
    Li HT, Lin DH, Luo XY et al (2005) Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration. FEBS J 272:3661–3672. doi:10.1111/j.1742-4658.2005.04792.x PubMedCrossRefGoogle Scholar
  73. 73.
    LaVoie MJ, Ostaszewski BL, Weihofen A et al (2005) Dopamine covalently modifies and functionally inactivates Parkin. Nat Med 11:1214–1221. doi:10.1038/nm1314 PubMedCrossRefGoogle Scholar
  74. 74.
    Gotz ME, Double K, Gerlach M et al (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 1012:193–208. doi:10.1196/annals.1306.017 PubMedCrossRefGoogle Scholar
  75. 75.
    Burke WJ, Kumar VB, Pandey N et al (2008) Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 115:193–203. doi:10.1007/s00401-007-0303-9 PubMedCrossRefGoogle Scholar
  76. 76.
    Zhou W, Gallagher A, Hong DP et al (2009) At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to alpha-synuclein and prevents its fibrillation. J Mol Biol 388:597–610. doi:10.1016/j.jmb.2009.03.053 PubMedCrossRefGoogle Scholar
  77. 77.
    Mazzulli JR, Armakola M, Dumoulin M et al (2007) Cellular oligomerization of alpha-synuclein is determined by the interaction of oxidized catechols with a C-terminal sequence. J Biol Chem 282:31621–31630. doi:10.1074/jbc.M704737200 PubMedCrossRefGoogle Scholar
  78. 78.
    Herrera FE, Chesi A, Paleologou KE et al (2008) Inhibition of alpha-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region. PLoS ONE 3:E3394. doi:10.1371/journal.pone.0003394 PubMedCrossRefGoogle Scholar
  79. 79.
    Hokenson MJ, Uversky VN, Goers J et al (2004) Role of individual methionines in the fibrillation of methionine-oxidized alpha-synuclein. Biochemistry 43:4621–4633. doi:10.1021/bi049979h PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Su Ling Leong
    • 1
    • 2
  • Roberto Cappai
    • 1
  • Kevin Jeffrey Barnham
    • 1
    • 2
  • Chi Le Lan Pham
    • 1
    • 2
  1. 1.Department of Pathology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleAustralia
  2. 2.The Mental Health Research InstituteParkvilleAustralia

Personalised recommendations