Neurochemical Research

, Volume 34, Issue 11, pp 1955–1961 | Cite as

Neuroprotective and Neurological Properties of Melissa officinalis

  • Víctor LópezEmail author
  • Sara Martín
  • Maria Pilar Gómez-Serranillos
  • Maria Emilia Carretero
  • Anna K. Jäger
  • Maria Isabel Calvo
Original Paper


Melissa officinalis has traditionally been used due to its effects on nervous system. Both methanolic and aqueous extracts were tested for protective effects on the PC12 cell line, free radical scavenging properties and neurological activities (inhibition of MAO-A and acetylcholinesterase enzymes and affinity to the GABAA-benzodiazepine receptor). The results suggest that the plant has a significant (P < 0.05) protective effect on hydrogen peroxide induced toxicity in PC12 cells. The radical scavenging properties were also investigated in cells and in cell free systems, where this plant was shown to be a good free radical scavenger. The MAO-A bioassay was also performed to detect possible antidepressant activities demonstrating that both extracts inhibited this enzyme, which has a key role in neurotransmitters metabolism. However, no activity was detected in the acetylcholinesterase and GABA assays. In general, the methanolic extract was more effective than the aqueous.


Melissa officinalis Traditional medicine Neuroprotective PC12 Antioxidant MAO 



University of Navarra Foundation and Alumni Navarrensis Association are thanked for finantial support and fellowships.


  1. 1.
    Ulbricht C, Brendler T, Gruenwald J et al (2005) Lemon balm (Melissa officinalis L.): an evidence-based systematic review by the Natural Standard Research Collaboration. J Herb Pharmacother 5(4):71–114PubMedGoogle Scholar
  2. 2.
    Wheatley D (2005) Medicinal plants for insomnia: a review of their pharmacology, efficacy and tolerability. J Psychopharmacol 19(4):414–421. doi: 10.1177/0269881105053309 PubMedCrossRefGoogle Scholar
  3. 3.
    Kennedy DO, Little W, Haskell CF et al (2006) Anxiolytic effects of a combination of Melissa officinalis and Valeriana officinalis during laboratory induced stress. Phytother Res 20(2):96–102. doi: 10.1002/ptr.1787 PubMedCrossRefGoogle Scholar
  4. 4.
    Kennedy DO, Little W, Scholey AB (2004) Attenuation of laboratory-induced stress in humans after acute administration of Melissa officinalis (Lemon Balm). Psychosom Med 66(4):607–613. doi: 10.1097/01.psy.0000132877.72833.71 PubMedCrossRefGoogle Scholar
  5. 5.
    Khandhar SM, Marks WJ (2007) Epidemiology of Parkinson’s disease. Dis Mon 53(4):200–205. doi: 10.1016/j.disamonth.2007.02.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Sanders S, Morano C (2008) Alzheimer’s disease and related dementias. J Gerontol Soc Work 50(Suppl 1):191–214. doi: 10.1080/01634370802137900 PubMedCrossRefGoogle Scholar
  7. 7.
    Rang HP, Dale MM, Ritter JM et al (2003) Pharmacology. Churchill Livingstone, Edimburgh, pp 456–610Google Scholar
  8. 8.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247. doi: 10.1038/35041687 PubMedCrossRefGoogle Scholar
  9. 9.
    Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428. doi: 10.1073/pnas.73.7.2424 PubMedCrossRefGoogle Scholar
  10. 10.
    Hou RR, Chen JZ, Chen H et al (2008) Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells. Cell Biol Int 32(1):22–30. doi: 10.1016/j.cellbi.2007.08.007 PubMedCrossRefGoogle Scholar
  11. 11.
    Timonen M, Liukkonen T (2008) Management of depression in adults. BMJ 336(7641):435–439. doi: 10.1136/bmj.39478.609097.BE PubMedCrossRefGoogle Scholar
  12. 12.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Tyson CA, Green CE (1987) Cytotoxicity measures: choice and methods. In: Rauckmann EJ, Padillar GM (eds) The isolated hepatocyte, use in toxicology and xenobiotic biotransformations. Academic Press, Orlando, pp 119–158Google Scholar
  14. 14.
    Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616. doi: 10.1016/S0891-5849(99)00107-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237. doi: 10.1016/S0891-5849(98)00315-3 PubMedCrossRefGoogle Scholar
  16. 16.
    Ribeiro B, Valentao P, Baptista P et al (2007) Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food Chem Toxicol 45(10):1805–1813. doi: 10.1016/j.fct.2007.03.015 PubMedCrossRefGoogle Scholar
  17. 17.
    Unno T, Sugimoto A, Kakuda T (2004) Xanthine oxidase inhibitors from the leaves of Lagerstroemia speciosa (L.). Pers. J Ethnopharmacol 93(2-3):391–395. doi: 10.1016/j.jep.2004.04.012 PubMedCrossRefGoogle Scholar
  18. 18.
    Olsen HT, Stafford GI, van Staden J et al (2008) Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol 117(3):500–502. doi: 10.1016/j.jep.2008.02.015 PubMedCrossRefGoogle Scholar
  19. 19.
    Rhee IK, van de Meent M, Ingkaninan K et al (2001) Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J Chromatogr A 915(1–2):217–223. doi: 10.1016/S0021-9673(01)00624-0 PubMedCrossRefGoogle Scholar
  20. 20.
    Risa J, Risa A, Adsersen A et al (2004) Screening of plants used in southern Africa for epilepsy and convulsions in the GABA-A-benzodiazepine receptor assay. J Ethnopharmacol 93(2–3):177–182. doi: 10.1016/j.jep.2004.01.021 PubMedCrossRefGoogle Scholar
  21. 21.
    Mencherini T, Picerno P, Scesa C et al (2007) Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. J Nat Prod 70(12):1889–1894. doi: 10.1021/np070351s PubMedCrossRefGoogle Scholar
  22. 22.
    Pereira RP, Fachinetto R, de Souza Prestes A et al (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res 34:973–983. doi: 10.1007/s11064-008-9861-z PubMedCrossRefGoogle Scholar
  23. 23.
    Lopez V, Akerreta S, Casanova E et al (2007) In vitro antioxidant and anti-rhizopus activities of Lamiaceae herbal extracts. Plant Foods Hum Nutr 62(4):151–155. doi: 10.1007/s11130-007-0056-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Ferreira A, Proenca C, Serralheiro ML et al (2006) The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 108(1):31–37. doi: 10.1016/j.jep.2006.04.010 PubMedCrossRefGoogle Scholar
  25. 25.
    Canadanovic-Brunet J, Cetkovic G, Djilas S et al (2008) Radical scavenging, antibacterial, and antiproliferative activities of Melissa officinalis L. extracts. J Med Food 11(1):133–143. doi: 10.1089/jmf.2007.580 PubMedCrossRefGoogle Scholar
  26. 26.
    Valentao P, Fernandes E, Carvalho F et al (2002) Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agric Food Chem 50(17):4989–4993. doi: 10.1021/jf020225o PubMedCrossRefGoogle Scholar
  27. 27.
    Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63(7):1035–1042. doi: 10.1021/np9904509 PubMedCrossRefGoogle Scholar
  28. 28.
    Jager AK, Gauguin B, Adsersen A et al (2006) Screening of plants used in Danish folk medicine to treat epilepsy and convulsions. J Ethnopharmacol 105(1–2):294–300. doi: 10.1016/j.jep.2005.10.015 PubMedCrossRefGoogle Scholar
  29. 29.
    Salah SM, Jager AK (2005) Screening of traditionally used Lebanese herbs for neurological activities. J Ethnopharmacol 97(1):145–149. doi: 10.1016/j.jep.2004.10.023 PubMedCrossRefGoogle Scholar
  30. 30.
    Adsersen A, Gauguin B, Gudiksen L et al (2006) Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J Ethnopharmacol 104(3):418–422. doi: 10.1016/j.jep.2005.09.032 PubMedCrossRefGoogle Scholar
  31. 31.
    Abuhamdah S, Huang L, Elliott MS et al (2008) Pharmacological profile of an essential oil derived from Melissa officinalis with anti-agitation properties: focus on ligand-gated channels. J Pharm Pharmacol 60(3):377–384. doi: 10.1211/jpp.60.3.0014 PubMedCrossRefGoogle Scholar
  32. 32.
    Saaby L, Rasmussen HB, Jager AK (2009) MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J Ethnopharmacol 121(1):178–181. doi: 10.1016/j.jep.2008.10.012 PubMedCrossRefGoogle Scholar
  33. 33.
    Chimenti F, Cottiglia F, Bonsignore L et al (2006) Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod 69(6):945–949. doi: 10.1021/np060015w PubMedCrossRefGoogle Scholar
  34. 34.
    Lee MH, Lin RD, Shen LY et al (2001) Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J Agric Food Chem 49(11):5551–5555. doi: 10.1021/jf010622j PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Víctor López
    • 1
    • 2
    • 3
    Email author
  • Sara Martín
    • 2
  • Maria Pilar Gómez-Serranillos
    • 2
  • Maria Emilia Carretero
    • 2
  • Anna K. Jäger
    • 3
  • Maria Isabel Calvo
    • 1
  1. 1.Department of Pharmacy and Pharmaceutical Technology, School of PharmacyUniversity of NavarraPamplonaSpain
  2. 2.Department of Pharmacology, School of PharmacyComplutense University of MadridMadridSpain
  3. 3.Department of Medicinal Chemistry, Faculty of Pharmaceutical SciencesUniversity of CopenhagenCopenhagen ODenmark

Personalised recommendations