Neurochemical Research

, Volume 34, Issue 10, pp 1712–1720 | Cite as

Astrocytes and Interneurons in Memory Processing in the Chick Hippocampus: Roles for G-Coupled Protein Receptors, GABA(B) and mGluR1

  • Marie E. Gibbs
  • David N. Bowser
Original Paper


Glutamate and GABA acting at mGluR1 and GABAB receptors, respectively, have roles in memory processing in the hippocampus up to 35 min after bead discrimination learning in the young chick. Activation of mGluR1 receptors is important at 2.5 and 30 min after training, but modulation of these receptors between these two times has no effect on memory. This timing is similar to the action of glutamate on NMDA receptors. The GABAB antagonist, phaclofen, and the inhibitor of astrocytic oxidative metabolism, fluoroacetate, inhibited memory when injected between 2.5 and 30 min. Paradoxically, a high dose of the GABAB agonist, baclofen, also inhibited memory, but a low dose promoted memory consolidation—an effect possibly caused by too much information and loss of the ‘message’. These results are interpreted in terms interactions between interneurons, astrocytes and pyramidal cells and demonstrate the importance of all cell types in memory processing in the hippocampus.


GABA(B) mGluR Astrocytes Memory Chick Bead discrimination learning 



This work was funded by a Monash University Research Grant awarded to M. E. Gibbs.


  1. 1.
    Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620. doi: 10.1523/JNEUROSCI.2660-04.2004 PubMedCrossRefGoogle Scholar
  2. 2.
    Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  3. 3.
    Horridge GA (1968) Interneurones: their origin, action, specificity, growth and plasticity. Freeman, San FranciscoGoogle Scholar
  4. 4.
    Gibbs ME, Bowser DN, Hutchinson DS et al (2008) Memory processing in the avian hippocampus involves interactions between β-adrenoceptors, glutamate receptors and metabolism. Neuropsychopharmacology 33:2831–2846. doi: 10.1038/npp.2008.5 PubMedCrossRefGoogle Scholar
  5. 5.
    Gibbs ME, Summers RJ (2002) Role of adrenoceptor subtypes in memory consolidation. Prog Neurobiol 67:345–391. doi: 10.1016/S0301-0082(02)00023-0 PubMedCrossRefGoogle Scholar
  6. 6.
    Gibbs ME (2008) Memory systems in the chick: regional and temporal control by noradrenaline. Brain Res Bull 76:170–182. doi: 10.1016/j.brainresbull.2008.02.021 PubMedCrossRefGoogle Scholar
  7. 7.
    Treves A, Tashiro A, Witter ME et al (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172. doi: 10.1016/j.neuroscience.2008.04.073 PubMedCrossRefGoogle Scholar
  8. 8.
    Atoji Y, Wild JM (2006) Anatomy of the avian hippocampal formation. Rev Neurosci 17:3–15PubMedGoogle Scholar
  9. 9.
    Margrie TW, Rostas JAP, Sah P (1998) Long-term potentiation of synaptic transmission in the avian hippocampus. J Neurosci 18:1207–1216PubMedGoogle Scholar
  10. 10.
    Gibbs ME, Johnston GAR (2005) Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks. Neuroscience 131:567–576PubMedCrossRefGoogle Scholar
  11. 11.
    Ng KT, O’Dowd BS, Rickard NS (1997) Complex roles of glutamate in the Gibbs-Ng model of one-trial aversive learning in the new-born chick. Neurosci Biobehav Rev 21:45–54. doi: 10.1016/0149-7634(95)00079-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Gibbs ME, Hertz L, Ng KT (2004) Inhibition of short-term memory formation in the chick by blockade of extracellular glutamate uptake. Learn Mem 81:115–119. doi: 10.1016/j.nlm.2003.10.002 CrossRefGoogle Scholar
  13. 13.
    Jarvis ED, Gunturkun O, Bruce L et al (2005) Opinion: avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159. doi: 10.1038/nrn1606 PubMedCrossRefGoogle Scholar
  14. 14.
    Reiner A (2005) A new avian brain nomenclature: why, how and what. Brain Res Bull 66:317–331. doi: 10.1016/j.brainresbull.2005.05.007 PubMedCrossRefGoogle Scholar
  15. 15.
    Gibbs ME, Johnston AN, Mileusnic R et al (2008) A comparison of protocols for passive and discriminative avoidance learning tasks in the domestic chick. Brain Res Bull 76:198–207. doi: 10.1016/j.brainresbull.2008.02.032 PubMedCrossRefGoogle Scholar
  16. 16.
    Gibbs ME, Hutchinson DS, Summers RJ (2008) Role of β-adrenoceptors in memory consolidation: β3-adrenoceptors act on glucose uptake and β2-adrenoceptors on glycogenolysis. Neuropsychopharmacology 33:2384–2397. doi: 10.1038/sj.npp.1301629 PubMedCrossRefGoogle Scholar
  17. 17.
    Cui Y, Costa RM, Murphy GG et al (2008) Neurofibromin regulation of ERK signalling modulates GABA release and learning. Cell 135:549–560. doi: 10.1016/j.cell.2008.09.060 PubMedCrossRefGoogle Scholar
  18. 18.
    O’Dowd BS, Gibbs ME, Sedman GL et al (1994) Astrocytes implicated in the energizing of intermediate memory processes in neonate chicks. Brain Res Cogn Brain Res 2:93–102. doi: 10.1016/0926-6410(94)90006-X PubMedCrossRefGoogle Scholar
  19. 19.
    Gibbs ME, Lloyd HGE, Santa T et al (2007) Glycogen is a preferred glutamate precorsor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333. doi: 10.1002/jnr.21307 PubMedCrossRefGoogle Scholar
  20. 20.
    Daisley JN, Rose SP (2002) Amino acid release from the intermediate medial hyperstriatum ventrale (IMHV) of day-old chicks following a one-trial passive avoidance task. Neurobiol Learn Mem 77:185–201. doi: 10.1006/nlme.2001.4011 PubMedCrossRefGoogle Scholar
  21. 21.
    Khakh BS, Gittermann D, Cockayne DA et al (2003) ATP modulation of excitatory synapses onto interneurons. J Neurosci 23:7426–7437PubMedGoogle Scholar
  22. 22.
    Price CJ, Cauli B, Kovacs ER et al (2005) Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci 25:6775–6786. doi: 10.1523/JNEUROSCI.1135-05.2005 PubMedCrossRefGoogle Scholar
  23. 23.
    Price CJ, Scott R, Rusakov DA et al (2008) GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells. J Neurosci 28:6974–6982. doi: 10.1523/JNEUROSCI.4673-07.2008 PubMedCrossRefGoogle Scholar
  24. 24.
    Serrano A, Haddjeri N, Lacaille JC et al (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382. doi: 10.1523/JNEUROSCI.5255-05.2006 PubMedCrossRefGoogle Scholar
  25. 25.
    Todd KJ, Serrano A, Lacaille JC et al (2006) Glial cells in synaptic plasticity. J Physiol (Paris) 99:75–83. doi: 10.1016/j.jphysparis.2005.12.002 CrossRefGoogle Scholar
  26. 26.
    Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692. doi: 10.1038/3684 PubMedCrossRefGoogle Scholar
  27. 27.
    Pfaff D (1969) Parsimonious biological models of memory and reinforcement. Psychol Rev 76:70–81. doi: 10.1037/h0026742 PubMedCrossRefGoogle Scholar
  28. 28.
    Kety SS (1970) The biogenic amines in the central nervous system: their possible roles in arousal, emotion, and learning. In: Schmitt FO (ed) The neurosciences: second study program. The Rockefeller University Press, New York, pp 324–336Google Scholar
  29. 29.
    Young JZ (1965) The organization of a memory system. Proc R Soc Lond B Biol Sci 163:285–320. doi: 10.1098/rspb.1965.0071 PubMedCrossRefGoogle Scholar
  30. 30.
    Zsiros V, Maccaferri G (2008) Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J Neurosci 28:1804–1815. doi: 10.1523/JNEUROSCI.4616-07.2008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Developmental BiologyMonash UniversityClaytonAustralia
  2. 2.Howard Florey and Mental Health Research InstitutesUniversity of MelbourneParkvilleAustralia
  3. 3.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia

Personalised recommendations