Neurochemical Research

, Volume 34, Issue 9, pp 1523–1534 | Cite as

Are Astrocytes the Missing Link Between Lack of Brain Aspartoacylase Activity and the Spongiform Leukodystrophy in Canavan Disease?

  • Morris H. Baslow
  • David N. Guilfoyle


Canavan disease (CD) is a genetic degenerative brain disorder associated with mutations of the gene encoding aspartoacylase (ASPA). In humans, the CD syndrome is marked by early onset, hydrocephalus, macroencephaly, psychomotor retardation, and spongiform myelin sheath vacuolization with progressive leukodystrophy. Metabolic hallmarks of the disease include elevated N-acetylaspartate (NAA) levels in brain, plasma and CSF, along with daily excretion of large amounts of NAA and its anabolic metabolite, N-acetylaspartylglutamate (NAAG). Of the observed neuropathies, the most important appears to be the extensive demyelination that interferes with normal neuronal signaling. However, finding the links between the lacks of ASPA activity in oligodendrocytes, the buildup of NAA in white matter (WM) and the mechanisms underlying the edematous spongiform leukodystrophy have remained elusive. In this analytical review we consider what those links might be and propose that in CD, the pathological buildup of NAA in limited WM extracellular fluid (ECF) is responsible for increased ECF osmotic–hydrostatic pressure and initiation of the demyelination process. We also hypothesize that NAA is not directly liberated by neurons in WM as it is in gray matter, and that its source in WM ECF is solely as a product of the catabolism of axon-released NAAG at nodes of Ranvier by astrocyte NAAG peptidase after it has docked with the astrocyte surface metabotropic glutamate receptor 3. This hypothesis ascribes for the first time a possible key role played by astrocytes in CD, linking the lack of ASPA activity in myelinating oligodendrocytes, the pathological buildup of NAA in WM ECF, and the spongiform demyelination process. It also offers new perspectives on the cause of the leukodystrophy in CD, and on possible treatment strategies for this inherited metabolic disease.


Canavan disease N-Acetylaspartate N-Acetylaspartylglutamate Metabotropic glutamate receptor 3 Aspartoacylase NAAG peptidase 

Abbreviations Used




Aquaporin 4








Canavan disease


Central nervous system


Cerebrospinal fluid


Extracellular fluid


Extracellular space


Functional magnetic resonance spectroscopy






Gray matter


Metabotropic Glu receptor 3


Investigative new drugs


Monovalent metal cation


Molecular water pump






Osmotic demyelination syndrome




White matter


  1. 1.
    Kaya N, Imtiaz F, Colak D et al (2008) Genome-wide gene expression profiling and mutation analysis of Saudi patients with Canavan disease. Genet Med 10(9):675–684. doi: 10.1097/GIM.0b013e31818337a8 PubMedCrossRefGoogle Scholar
  2. 2.
    Janson CG, McPhee SWJ, Francis J (2006) Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI. Neuropediatrics 37:209–221PubMedCrossRefGoogle Scholar
  3. 3.
    Baslow MH (2007) N-acetylaspartate and N-acetylaspartylglutamate. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology. Amino Acids and Peptides in the Nervous System, pp 418. 3rd edn, vol 6, Chap. 14. p305-346. Springer Science, NY ISBN:978-0-387-30342-0Google Scholar
  4. 4.
    Moffett JR, Ross B, Arun P et al (2007) N-acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131. doi: 10.1016/j.pneurobio.2006.12.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Breitbach-Faller N, Schrader K, Rating D, Wunsch R (2003) Ultrasound findings in follow-up investigations in a case of aspartoacylase deficiency (Canavan disease). Neuropediat 34:96–99. doi: 10.1055/s-2003-39601 CrossRefGoogle Scholar
  6. 6.
    Baslow MH (2000) Functions of N-acetyl-l-aspartate and N-acetyl-l-aspartylglutamate in the vertebrate brain. Role in glial cell-specific signaling. J Neurochem 75:453–459. doi: 10.1046/j.1471-4159.2000.0750453.x PubMedCrossRefGoogle Scholar
  7. 7.
    Baslow MH (2003) Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease. A mechanistic explanation. J Mol Neurosci 21:185–189. doi: 10.1385/JMN:21:3:185 PubMedCrossRefGoogle Scholar
  8. 8.
    Horster F, Surtees R, Hoffmann GF (2005) Disorders of intermediary metabolism: toxic leukoencephalopathies. J Inherit Metab Dis 28(3):345–356. doi: 10.1007/s10545-005-2164-5 PubMedCrossRefGoogle Scholar
  9. 9.
    Traka M, Wollmann RL, Cerda SR et al (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration in the central nervous system. J Neurosci 28(45):11537–11549. doi: 10.1523/JNEUROSCI.1490-08.2008 PubMedCrossRefGoogle Scholar
  10. 10.
    Namboodiri AMA, Moffett JR, Arun P et al (2006) Defective myelin lipid synthesis as a pathogenic mechanism of Canavan disease. Adv Exp Med Biol 576:145–163. doi: 10.1007/0-387-30172-0_10 PubMedCrossRefGoogle Scholar
  11. 11.
    Chakraborty G, Mekala P, Yahya D, Wu G, Ledeen RW (2001) Intraneuronal N-acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin-associated aspartoacylase. J Neurochem 78:736–745. doi: 10.1046/j.1471-4159.2001.00456.x PubMedCrossRefGoogle Scholar
  12. 12.
    Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri MAA (2005) Progress toward acetate supplementation therapy for canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther 315:297–303. doi: 10.1124/jpet.105.087536 PubMedCrossRefGoogle Scholar
  13. 13.
    Ledeen RW, Wang J, Wu G, Lu Z-H, Chakraborty G, Meyenhofer M, Tyring SK, Matalon R (2006) Physiological role of N-acetylaspartate. Contribution to myelinogenesis. Chap 9 In: Adv Exp Med Biol, vol 576, pp 131–143. doi: 10.1007/0-387-30172-0_9Springer pp. 375
  14. 14.
    Inglese M, Rusinek H, George IC, Babb JS, Grossman RI, Gonen O (2008) Global average gray and white matter N-acetylaspartate concentration in the human brain. Neuroimage 41:270–276PubMedCrossRefGoogle Scholar
  15. 15.
    Baslow MH, Suckow R, Sapirstein V, Hungund BL (1999) Expression of aspartoacylase activity in cultured rat macroglial cells is limited to oligodendrocytes. J Mol Neurosci 13(1–2):47–53PubMedCrossRefGoogle Scholar
  16. 16.
    Verkman AS, Binder DK, Bloch O et al (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice Biochim. Biophys Acta 1758(8):1085–1093CrossRefGoogle Scholar
  17. 17.
    Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends in Neurosci 31(1):37–43CrossRefGoogle Scholar
  18. 18.
    Sarchielli P, Tarducci R, Presciutti O et al (2005) Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 24:1025–1031PubMedCrossRefGoogle Scholar
  19. 19.
    Baslow MH, Hrabe J, Guilfoyle DN (2007) Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex. Evidence that NAA functions as a molecular water pump during visual stimulation. J Mol Neurosci 32:235–245PubMedCrossRefGoogle Scholar
  20. 20.
    Moffett JR, Namboodiri AMA (2006) Expression of N-acetylaspartate and N-acetylaspartylglutamate in the nervous system. Adv Exptl Med Biol 576:7–2621CrossRefGoogle Scholar
  21. 21.
    Shah AJ, de la Flor R, Atkins A et al (2008) Development and application of a liquid chromatography/tandem mass spectrometric assay for measurement of N-acetylaspartate, N-acetylaspartylglutamate and glutamate in brain slice superfusates and tissue extracts. J Chromatography B 876(2):153–158CrossRefGoogle Scholar
  22. 22.
    Hashemi M, Buibas M, Silva GA (2008) Automated detection of intercellular signaling in astrocyte networks using the converging squares algorithm J. Neurosci Methods 170:294–299CrossRefGoogle Scholar
  23. 23.
    Baslow MH, Guilfoyle DN (2007) Using proton magnetic resonance imaging and spectroscopy to understand brain “activation”. Brain Lang 102(2):153–164PubMedCrossRefGoogle Scholar
  24. 24.
    Xu H-L, Pelligrino DA (2007) ATP release and hydrolysis contribute to rat pial arteriolar dilatation elicited by neuronal activation. Exp Physiol 92:647–651PubMedCrossRefGoogle Scholar
  25. 25.
    Baslow MH (2008) The astrocyte surface NAAG receptor and NAAG peptidase signaling complex as a therapeutic target. Drug News and Perspectives 21(5):251–257PubMedCrossRefGoogle Scholar
  26. 26.
    Baslow MH (2009) A novel key-lock mechanism for inactivating amino acid neurotransmitters during transit across extracellular spaces. Amino Acids DOI  10.1007/s00726-009-0232-0 (Jan 17)
  27. 27.
    Woolley ML, Fricker A-C, Mok MHS et al (2008) Re-evaluation of N-acetylaspartylglutamate NAAG) as an agonist at group II mGluRs, and antagonist at NMDA receptors. Neuropharmacol 55:630 Abs. # 146Google Scholar
  28. 28.
    Fitzpatrick MO, Maxwell WL, Graham DI (1998) The role of the axolemma in the initiation of traumatically induced axonal injury. J Neurol Neurosurg Psychiatry 64:285–287PubMedCrossRefGoogle Scholar
  29. 29.
    Upadhyay J, Hallock K, Dueros M et al (2008) Diffusion tensor spectroscopy and imaging of the arcuate fasciculus. Neuroimage 39:1–9PubMedCrossRefGoogle Scholar
  30. 30.
    Sacha P, Zamecnik J, Barinka C et al (2007) Expression of glutamate carboxyeptidase II in human brain. Neurosci 2007(144):1361–1372CrossRefGoogle Scholar
  31. 31.
    Lavreysen H, Dautzenberg FM (2008) Therapeutic potential of Group III metabotropic glutamate receptors. Curr Med Chem 15(7):671–684PubMedCrossRefGoogle Scholar
  32. 32.
    Fotuhi M, Standaert DG, Testa CM et al (1994) Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat. Mol. Br. Res. 21:283–292CrossRefGoogle Scholar
  33. 33.
    Hinson SR, Pittock SJ, Lucchinetti CF, Roemer SF, Fryer JP, Kryzer TJ, Lennon VA (2007) Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurology 69:2221–2231PubMedCrossRefGoogle Scholar
  34. 34.
    Sartori S, Burlina AB, Salviati L et al (2008) Increased level of N-acetylaspartylglutamate (NAAG) in the CSF of a patient with Pelizaeus-Merzbacher-like disease due to a mutation in the GjA12 gene. Eur J Paed Neurol 12:348–350CrossRefGoogle Scholar
  35. 35.
    Upadhyay J, Hallock K, Erb K et al (2007) Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy. Mag Res Med 58:1045–1053CrossRefGoogle Scholar
  36. 36.
    Halassa MM, Fellin T, Takano H (2007) Synaptic islands defined by the territory of a single astrocyte. J Neurosci 27(24):6473–6477PubMedCrossRefGoogle Scholar
  37. 37.
    Hirano A, Dembitzer HM (1978) Morphology of normal central myelinated axons. In: Waxman SO (ed) Physiology and pathobiology of axons. Raven Press, NY, p 448Google Scholar
  38. 38.
    Neeb H, Zilles K, Shah NJ (2006) Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage 29:910–922PubMedCrossRefGoogle Scholar
  39. 39.
    Klugmann M, Symes CW, Klaussner BK et al (2003) Identification and distribution of aspartoacylase in postnatal rat brain. NeuroReport 14(14):1837–1840PubMedCrossRefGoogle Scholar
  40. 40.
    Madhavarao CN, Moffett JR, Moore RA et al (2004) Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol 472:318–329PubMedCrossRefGoogle Scholar
  41. 41.
    Bitto E, Bingman CA, Wesenberg GE et al (2007) Structure of aspartoacylase, the brain enzyme impaired in Canavan disease. PNAS 104(2):456–461PubMedCrossRefGoogle Scholar
  42. 42.
    Wang J, Matalon R, Bhatia G et al (2007) Bimodal occurrence of aspartoacylase in myelin and cytosol of brain. J Neurochem 101:448–457PubMedCrossRefGoogle Scholar
  43. 43.
    Hershfield JR, Pattabiraman N, Madhavarao CN, Namboodiri MAA (2007) Mutational analysis of aspartoacylase: implications for Canavan disease. Brain Res 1148:1–14PubMedCrossRefGoogle Scholar
  44. 44.
    Le Coq J, Pavlovsky A, Malik R et al (2008) Examination of the mechanism of human brain aspartoacylase through binding of an intermediate analogue. Biochem. 47(11):3484–3492CrossRefGoogle Scholar
  45. 45.
    Guilfoyle DN, Suckow RF, Baslow MH (2003) The apparent dependence of the diffusion coefficient of N-acetylaspartate upon magnetic field strength: evidence of an interaction with NMR methodology. NMR in Biomed. 16(8):468–474CrossRefGoogle Scholar
  46. 46.
    Laureno R, Karp BI (1997) Myelinolysis after correction of hyponatremia. Ann. Int. Med. 126(1):57–62PubMedGoogle Scholar
  47. 47.
    Tarhan NC, Agildere AM, Benli US et al (2004) Osmotic demyelination syndrome in end-stage renal disease after recent hemodialysis: MRI of the brain. AJR 182:809–816PubMedGoogle Scholar
  48. 48.
    Lien Y-HH (1995) Role of organic osmolytes in myeliolysis. A topographic study in rats after rapid correction of hyponatremia. J Clin Invest 95:1579–1586PubMedCrossRefGoogle Scholar
  49. 49.
    Mehta SK, Kaur K, Sharma S, Bhasin KK (2007) Behavior of acetyl modified amino acids in reverse micelles: a non-invasive and physiochemical approach. J Colloid Interf Sci 314:689–698CrossRefGoogle Scholar
  50. 50.
    Baslow MH, Guilfoyle DN (2002) Effect of N-acetylaspartic acid on the diffusion coefficient of water: a proton magnetic resonance phantom method for measurement of osmolyte-obligated water. Analyt. Biochem. 311(2):133–138PubMedCrossRefGoogle Scholar
  51. 51.
    Valdez D, Le Huerou J-Y, Gindre M et al (2001) Hydration and protein folding in water and in reverse micelles: compressibility and volume changes. Biophys J 80:2751–2760PubMedCrossRefGoogle Scholar
  52. 52.
    Thomas AG, Wozniak KM, Tsukamato T et al (2006) Glutamate carboxypeptidase II (NAALAdase) inhibition as a novel therapeutic strategy. Adv Exp Med Biol 576:327–337PubMedCrossRefGoogle Scholar
  53. 53.
    Baslow MH (2001) Canavan’s spongiform leukodystrophy. A clinical anatomy of a genetic metabolic CNS disease. J Mol Neurosci 15:61–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Center for NeurochemistryNathan S. Kline Institute for Psychiatric ResearchOrangeburgUSA
  2. 2.Center for Advanced Brain ImagingNathan S. Kline Institute for Psychiatric ResearchOrangeburgUSA

Personalised recommendations