Neurochemical Research

, 34:1372 | Cite as

In vitro Antioxidant Activity of Valeriana officinalis Against Different Neurotoxic Agents

  • Jéssie Haigert Sudati
  • Roselei Fachinetto
  • Romaiana Picada Pereira
  • Aline Augusti Boligon
  • Margareth Linde Athayde
  • Felix Antunes Soares
  • Nilda Berenice de Vargas Barbosa
  • João Batista Teixeira RochaEmail author


Valeriana officinalis L. (Valerian) is widely used as a traditional medicine to improve the quality of sleep. Although V. officinalis have been well documented as promising pharmacological agent; the exact mechanisms by which this plant act is still unknown. Limited literature data have indicated that V. officinalis extracts can exhibit antioxidant properties against iron in hippocampal neurons in vitro. However, there is no data available about the possible antioxidant effect of V. officinalis against other pro-oxidants in brain. In the present study, the protective effect of V. officinalis on lipid peroxidation (LPO) induced by different pro-oxidant agents with neuropathological importance was examined. Ethanolic extract of valerian (0–60 μg/ml) was tested against quinolinic acid (QA); 3-nitropropionic acid; sodium nitroprusside; iron sulfate (FeSO4) and Fe2+/EDTA induced LPO in rat brain homogenates. The effect of V. officinalis in deoxyribose degradation and reactive oxygen species (ROS) production was also investigated. In brain homogenates, V. officinalis inhibited thiobarbituric acid reactive substances induced by all pro-oxidants tested in a concentration dependent manner. Similarly, V. officinalis caused a significant decrease on the LPO in cerebral cortex and in deoxyribose degradation. QA-induced ROS production in cortical slices was also significantly reduced by V. officinalis. Our results suggest that V. officinalis extract was effective in modulating LPO induced by different pro-oxidant agents. These data may imply that V. officinalis extract, functioning as antioxidant agent, can be beneficial for reducing insomnia complications linked to oxidative stress.


Valeriana officinalis Ethanolic extract Pro-oxidant agents TBARS Deoxyribose degradation Oxidative stress 



The financial support by CAPES/SAUX/PROAP, VITAE Fundation, CNPq, FAPERGS, ICTP and FINEP research grant ‘‘Rede Instituto Brasileiro de Neurociência (IBN-Net)’’ # 01.06.0842-00 is gratefully acknowledged.


  1. 1.
    World Health Organization (1992) The ICD-10 classification of mental and behavioral disorders. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Ancoli-Israel S, Roth T (1999) Characteristics of insomnia in the United States: results of the 1991 National Sleep Foundation Survey. I Sleep 22:S347–S353Google Scholar
  3. 3.
    Sateia MJ, Doghramji K, Hauri PJ, Morin CM (2000) Evaluation of chronic insomnia. An American academy of sleep medicine review. Sleep 23:243–308PubMedGoogle Scholar
  4. 4.
    Ohayon M (2002) Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev 6:97–111. doi: 10.1053/smrv.2002.0186 PubMedCrossRefGoogle Scholar
  5. 5.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147. doi: 10.1016/S0891-5849(96)00629-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Riemann D, Voderholzer U (2003) Primary insomnia: a risk factor to develop depression? J Affect Disord 76:255–259. doi: 10.1016/S0165-0327(02)00072-1 PubMedCrossRefGoogle Scholar
  7. 7.
    Halliwell B, Gutteridge JHC, Cross CE (1992) Free radicals, antioxidants and human disease: where we are now? J Lab Clin Med 119:598–620PubMedGoogle Scholar
  8. 8.
    Halliwell B, Gutteridge JMC (eds) (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, p 936Google Scholar
  9. 9.
    Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16:439–444. doi: 10.1016/0166-2236(93)90070-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Cirelli C (2006) Cellular consequences of sleep deprivation in the brain. Sleep Med Rev 10:307–321. doi: 10.1016/j.smrv.2006.04.001 PubMedCrossRefGoogle Scholar
  11. 11.
    D’Almeida V, Lobo LL, Hipolide DC, De Oliveira AC, Nobrega JN, Tufik S (1998) Sleep deprivation induces brain region-specific decreases in glutathione levels. NeuroReport 9(12):2853–2856PubMedCrossRefGoogle Scholar
  12. 12.
    Houghton PJ (1999) The scientific basis for the reputed activity of valerian. J Pharmacol 51:505–512. doi: 10.1211/0022357991772772 CrossRefGoogle Scholar
  13. 13.
    Richman A, Witkowski JP (1998) 4th Annual herbal products sales survey. Whole Foods 21:19–26Google Scholar
  14. 14.
    Gyllenhaal C, Merritt SL, Peterson SD, Block KI, Gochenour T (2000) Efficacy and safety of herbal stimulants and sedatives in sleep disorders. Sleep Med Rev 4:229–251. doi: 10.1053/smrv.1999.0093 PubMedCrossRefGoogle Scholar
  15. 15.
    Meoli AL, Rosen C, Kristo D, Kohrman M, Gooneratne N, Aguillard RN, Fayle R, Troell R, Touwnsend D, Claman D, Hoban T, Mahowald M (2005) Clinical practice review committee of the American academy of sleep medicine. Oral nonprescription treatment for insomnia: an evaluation of products with limited evidence. J Clin Sleep Med 2:173–187Google Scholar
  16. 16.
    Hallam KT, Olver JS, McGrath C, Norman TR (2003) Comparative cognitive and psychomotor effects of single doses of Valeriana officinalis and triazolam in healthy volunteers. Hum Psychopharmacol 18:619–625. doi: 10.1002/hup.542 PubMedCrossRefGoogle Scholar
  17. 17.
    Mueller CE, Brattstrom A, Abourashed EA, Koetter U (2002) Interactions of valerian extracts and a fixed valerian-hop extract combination with adenosine receptors. Life Sci 71:1939–1949. doi: 10.1016/S0024-3205(02)01964-1 CrossRefGoogle Scholar
  18. 18.
    Schumacher BSS, Hoelzl J, Khudeir N, Hess S, Mueller CE (2002) Lignans isolated from valerian: identification and characterization of a new olive oil derivative with partial agonistic activity at A1 adenosine receptors. J Nat Prod 65:1479–1485. doi: 10.1021/np010464q PubMedCrossRefGoogle Scholar
  19. 19.
    Ortiz JG, Rassi N, Maldonado PM, González-Cabrera S, Ramos I (2006) Commercial valerian interactions with [3H]-Flunitrazepam and [3H]MK-801 binding to rat synaptic membranes. Phytother Res 20(9):794–798. doi: 10.1002/ptr.1960 PubMedCrossRefGoogle Scholar
  20. 20.
    Oliveira DM, Barreto G, De Andrade DEV, Saraceno E, Aon-Bertolino L, Capani F, El Bacha RS, Giraldez LD (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34:215–220. doi: 10.1007/s11064-008-9749-y CrossRefGoogle Scholar
  21. 21.
    Malva JO, Santos S, Macedo T (2004) Neuroprotective properties of Valeriana officinalis extracts. Neurotox Res 6(2):131–140PubMedGoogle Scholar
  22. 22.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. doi: 10.1016/0003-2697(79)90738-3 PubMedCrossRefGoogle Scholar
  23. 23.
    Puntel RL, Nogueira CW, Rocha JBT (2005) N-Methyl-d-aspartate receptors are involved in the quinolinic acid, but not in the malonate pro-oxidative activity in vitro. Neurochem Res 30:417–424. doi: 10.1007/s11064-005-2617-0 PubMedCrossRefGoogle Scholar
  24. 24.
    Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: a simple “Test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219. doi: 10.1016/0003-2697(87)90222-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Monserrat JM, Geracitano LA, Pinho GLL, Vinagre TM, Faleiros M, Alciati JC, Bianchini A (2003) Determination of lipid peroxides in invertebrates tissues using the Fe(III). Xylenol orange complex formation. Arch Environ Contam Toxicol 45:177–183. doi: 10.1007/s00244-003-0073-x PubMedCrossRefGoogle Scholar
  26. 26.
    Pérez-Severiano P, Rodríguez-Pérez M, Pedraza-Chaverrí J, Maldonado PD, Medina Campos ON, Ortíz-Plata A, Sánchez-García A, Villeda-Hernández J, Galván-Arzate S, Aguilera P, Santamaría A (2004) S-allylcysteine, a garlic-derived antioxidant, ameliorates quinolinic acid-induced neurotoxicity and oxidative damage in rats. Neurochem Int 45:1175–1183. doi: 10.1016/j.neuint.2004.06.008 PubMedCrossRefGoogle Scholar
  27. 27.
    Kupfer DJ, Reynolds CFIII (1997) Current concepts: management of insomnia. N Engl J Med 336:341–346. doi: 10.1056/NEJM199701303360506 PubMedCrossRefGoogle Scholar
  28. 28.
    Holz J, Godau P (1989) Receptor binding studies with Valeriana officinalis on the benzodiazepine receptor. Planta Med 55:642. doi: 10.1055/s-2006-96221 Google Scholar
  29. 29.
    Fachinetto R, Villarinho JG, Wagner C, Pereira RP, Ávila DS, Burger ME, Calixto JB, Rocha JBT, Ferreira J (2007) Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Prog Neuropsychopharmacol Biol Psychiatry 31:1478–1486. doi: 10.1016/j.pnpbp.2007.06.028 PubMedCrossRefGoogle Scholar
  30. 30.
    Bostanci MO, Bag˘irici F (2008) Neuroprotective effect of aminoguanidine on iron-induced neurotoxicity. Brain Res Bull 76:57–62. doi: 10.1016/j.brainresbull.2007.11.011 PubMedCrossRefGoogle Scholar
  31. 31.
    Oboh G, Puntel RL, Rocha JBT (2007) Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain—in vitro. Food Chem 102:178–185. doi: 10.1016/j.foodchem.2006.05.048 CrossRefGoogle Scholar
  32. 32.
    Pereira RP, Fachinetto R, Prestes AS, Puntel RL, Silva GNS, Heinzmann BM, Boschetti TK, Athayde ML, Bürger ME, Morel AF, Morsh VM, Rocha JBT (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citrates. Neurochem Res (in press). doi: 10.1007/s11064-008-9861-z
  33. 33.
    Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, Dias GOC, Morel AF, Nogueira CW, Rocha JBTR (2006) Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res 1107:192–198. doi: 10.1016/j.brainres.2006.05.084 PubMedCrossRefGoogle Scholar
  34. 34.
    Rates SMK (2001) Plants as source of drugs. Toxicon 39:603–613. doi: 10.1016/S0041-0101(00)00154-9 PubMedCrossRefGoogle Scholar
  35. 35.
    Abourashed EA, Koetter U, Brattstrom A (2004) In vitro binding experiments with a valerian, hops, and their fixed combination extract (Ze91019) to selected central nervous system receptors. Phytomedicine 11:633–638. doi: 10.1016/j.phymed.2004.03.005 PubMedCrossRefGoogle Scholar
  36. 36.
    Brouillet E, Hantraye P, Ferrante RJ, Dolan R, Leroy-Willig A, Kowall NW, Beal MF (1995) Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proc Natl Acad Sci USA 92:7105–7109. doi: 10.1073/pnas.92.15.7105 PubMedCrossRefGoogle Scholar
  37. 37.
    Tŭnez I, Montilla P, Muñoz MC, Feijoo M, Salcedo M (2004) Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J Pineal Res 37:252–256. doi: 10.1111/j.1600-079X.2004.00163.x PubMedCrossRefGoogle Scholar
  38. 38.
    Bates JN, Baker MT, Guerra R, Harrison DG (1990) Nitric oxide generation from nitroprusside by vascular tissue. Biochem Pharmacol 42:157–165. doi: 10.1016/0006-2952(91)90406-U CrossRefGoogle Scholar
  39. 39.
    Chen J, Chang B, Williams M, Murad F (1991) Sodium nitroprusside degenerates cultured rat striatal neurons. NeuroReport 2:121–123. doi: 10.1097/00001756-199103000-00002 PubMedCrossRefGoogle Scholar
  40. 40.
    Loiacono RE, Beart PM (1992) Hippocampal-lesions induced by microinjection of the nitric-oxide donor nitroprusside. Eur J Pharmacol 216:331–333. doi: 10.1016/0014-2999(92)90381-D PubMedCrossRefGoogle Scholar
  41. 41.
    Bellé NAV, Dalmolin GD, Fonini G, Rubin MA, Rocha JBT (2004) Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008:245–251. doi: 10.1016/j.brainres.2004.02.036 PubMedCrossRefGoogle Scholar
  42. 42.
    Santamaría A, Ríos C (1993) MK-801, an N-Methyl-d-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54. doi: 10.1016/0304-3940(93)90796-N PubMedCrossRefGoogle Scholar
  43. 43.
    Goda K, Kishimoto R, Shimizu S, Hamane Y, Ueda M (1996) Quinolinic acid and active oxygens. Possible contribution of active oxygens during cell death in the brain. Adv Exp Med Biol 398:247–254PubMedGoogle Scholar
  44. 44.
    Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Iron catalyzed hydroxyl radical formation: stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624PubMedGoogle Scholar
  45. 45.
    Gogvadze V, Walter PB, Ames BN (2003) The role of Fe2+-induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Arch Biochem Biophys 414:255–260PubMedGoogle Scholar
  46. 46.
    Zago MP, Verstraeten SV, Oteiza PI (2000) Zinc in the prevention of Fe2+ initiated lipid and protein oxidation. Biol Res 33(2):143–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jéssie Haigert Sudati
    • 1
  • Roselei Fachinetto
    • 1
  • Romaiana Picada Pereira
    • 1
  • Aline Augusti Boligon
    • 2
  • Margareth Linde Athayde
    • 2
  • Felix Antunes Soares
    • 1
  • Nilda Berenice de Vargas Barbosa
    • 1
  • João Batista Teixeira Rocha
    • 1
    Email author
  1. 1.Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM)Campus Universitário, CamobiSanta MariaBrazil
  2. 2.Departamento de Farmácia Industrial, Universidade Federal de Santa MariaCampus Universitário, CamobiSanta MariaBrazil

Personalised recommendations