Neurochemical Research

, Volume 35, Issue 5, pp 693–701 | Cite as

Acute Restraint Stress Enhances Calcium Mobilization and Glutamate Exocytosis in Cerebrocortical Synaptosomes from Mice

  • Eiki SatohEmail author
  • Shusuke Shimeki
Original Paper


Acute stress is known to enhance the memory of events that are potentially threatening to the organisms. Glutamate, the most abundant excitatory neurotransmitter in the mammalian central nervous system, plays a critical role in learning and memory formation and calcium (Ca2+) plays an essential role in transmitter release from nerve terminals (synaptosomes). In the present study, we investigated the effects of acute restraint stress on cytosolic free Ca2+ concentration ([Ca2+]i) and glutamate release in cerebrocortical synaptosomes from mice. Acute restraint stress caused a significant increase in resting [Ca2+]i and significantly enhanced the ability of the depolarizing agents K+ and 4-aminopyridine (4-AP) to increase [Ca2+]i. It also brought about a significant increase in spontaneous (unstimulated) glutamate release and significantly enhanced K+- and 4-AP-induced Ca2+-dependent glutamate release. The pretreatment of synaptosomes with a combination of ω-agatoxin IVA (a P-type Ca2+ channel blocker) and ω-conotoxin GVIA (an N-type Ca2+ channel blocker) completely suppressed the enhancements of [Ca2+]i and Ca2+-dependent glutamate release in acute restraint-stressed mice. These results indicate that acute restraint stress enhances K+- or 4-AP-induced glutamate release by increasing [Ca2+]i via stimulation of Ca2+ entry through P- and N-type Ca2+ channels.


Acute restraint stress Ca2+ channel Cerebrocortical synaptosome Cytosolic free Ca2+ Glutamate release 



This study was supported by grants from the Research Foundation of Obihiro University of Agriculture and Veterinary Medicine.


  1. 1.
    McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189CrossRefPubMedGoogle Scholar
  2. 2.
    Shors TJ, Weiss C, Thompson RF (1992) Stress-induced facilitation of classical conditioning. Science 257:537–539CrossRefPubMedGoogle Scholar
  3. 3.
    McEwen BS, Sapolsky RM (1995) Stress and cognitive function. Curr Opin Neurobiol 5:205–216CrossRefPubMedGoogle Scholar
  4. 4.
    McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904CrossRefPubMedGoogle Scholar
  5. 5.
    Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11:438–443CrossRefPubMedGoogle Scholar
  6. 6.
    Llinás RR (1991) Depolarization release coupling: an overview. Ann NY Acad Sci 635:3–17CrossRefPubMedGoogle Scholar
  7. 7.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39CrossRefPubMedGoogle Scholar
  8. 8.
    Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11:379–387CrossRefPubMedGoogle Scholar
  9. 9.
    Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622CrossRefPubMedGoogle Scholar
  10. 10.
    Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657CrossRefPubMedGoogle Scholar
  11. 11.
    Lowy MT, Gault L, Yamamoto BK (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 61:1957–1960CrossRefPubMedGoogle Scholar
  12. 12.
    Reznikov LR, Grillo CA, Piroli GG et al (2007) Acute stress-mediated increases in extracellular glutamate levels in the rat amygdale: differential effects of antidepressant treatment. Eur J Neurosci 25:3109–3114CrossRefPubMedGoogle Scholar
  13. 13.
    Gilad GM, Gilad VH, Wyatt RJ et al (1990) Region-selective stress-induced increase of glutamate uptake and release in rat forebrain. Brain Res 525:335–338CrossRefPubMedGoogle Scholar
  14. 14.
    Fontella FU, Vendite DA, Tabajara AS et al (2004) Repeated restraint stress alters hippocampal glutamate uptake and release in the rat. Neurochem Res 29:1703–1709CrossRefPubMedGoogle Scholar
  15. 15.
    Satoh E, Edamatsu H, Omata Y (2006) Acute restraint stress enhances calcium mobilization and proliferative response in splenic lymphocytes from mice. Stress 9:223–230CrossRefPubMedGoogle Scholar
  16. 16.
    Glick D, Von Redlich D, Levine S (1964) Fluorometric determination of corticosterone and cortisol in 0.02–0.05 milliliters of plasma or submilligram samples of adrenal tissue. Endocrinology 74:653–655CrossRefPubMedGoogle Scholar
  17. 17.
    Dunkley PR, Heath JW, Harrison SM et al (1988) A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res 441:59–71CrossRefPubMedGoogle Scholar
  18. 18.
    Wang S-J (2006) Facilitatory effect of aspirin on glutamate release from rat hippocampal nerve terminals: involvement of protein kinase C pathway. Neurochem Int 48:181–190CrossRefPubMedGoogle Scholar
  19. 19.
    Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  20. 20.
    Satoh E, Nakazato Y (1991) Effects of monensin and veratridine on acetylcholine release and cytosolic free Ca2+ levels in cerebrocortical synaptosomes of rats. J Neurochem 57:1270–1275CrossRefPubMedGoogle Scholar
  21. 21.
    Komulainen H, Bondy SC (1987) The estimation of free calcium within synaptosomes and mitochondria with fura-2; comparison to quin-2. Neurochem Int 10:55–64CrossRefGoogle Scholar
  22. 22.
    McDonough PM, Button DC (1989) Measurement of cytoplasmic calcium concentration in cell suspensions: Correction for extracellular fura-2 through use of Mn2+ and probenecid. Cell Calcium 10:171–180CrossRefPubMedGoogle Scholar
  23. 23.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  24. 24.
    Nicholls DG, Sihra TS, Sanchez-Prieto J (1987) Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 49:50–57CrossRefPubMedGoogle Scholar
  25. 25.
    Silberman DM, Wald M, Genaro AM (2002) Effects of chronic mild stress on lymphocyte proliferative response. Participation of serum thyroid hormones and corticosterone. Int Immunopharmacol 2:487–497CrossRefPubMedGoogle Scholar
  26. 26.
    Stark JL, Avitsur R, Padgett DA et al (2001) Social stress induces glucocorticoid resistance in macrophages. Am J Physiol 280:R1799–R1805Google Scholar
  27. 27.
    Vohora D, Pal SN, Pillai KK (2007) Thioperamide reduces intracellular calcium in mouse brain synaptosomes. Eur Neuropsychopharmacol 17:375–376CrossRefPubMedGoogle Scholar
  28. 28.
    Tibbs GR, Barrie AP, Van Mieghem FJ et al (1989) Repetitive action potentials in isolated nerve terminals in the presence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release. J Neurochem 53:1693–1699CrossRefPubMedGoogle Scholar
  29. 29.
    Sidach SS, Mintz IM (2000) Low-affinity blockade of neuronal N-type Ca channels by the spider toxin ω-agatoxin-IVA. J Neurosci 20:7174–7182PubMedGoogle Scholar
  30. 30.
    Boland LM, Morrill JA, Bean BP (1994) ω-Conotoxin block of N-type calcium channels in frog and rat sympathetic neurons. J Neurosci 14:5011–5027PubMedGoogle Scholar
  31. 31.
    Vázquez E, Sánchez-Prieto J (1997) Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Eur J Neurosci 9:2009–2018CrossRefPubMedGoogle Scholar
  32. 32.
    Vinje ML, Valø ET, Røste GK et al (1999) Measured increase in intracellular Ca2+ during stimulated release of endogenous glutamate from human cerebrocortical synaptosomes. Brain Res 843:199–201CrossRefPubMedGoogle Scholar
  33. 33.
    Kvetñanský R, Weise VK, Gewirtz GP et al (1971) Synthesis of adrenal catecholamines in rats during and after immobilization stress. Endocrinology 89:46–49CrossRefPubMedGoogle Scholar
  34. 34.
    Keim KL, Sigg EB (1976) Physiological and biochemical concomitants of restraint stress in rats. Pharmacol Biochem Behav 4:289–297CrossRefPubMedGoogle Scholar
  35. 35.
    Bhargava A, Meijer OC, Dallman MF et al (2000) Plasma membrane calcium pump isoform 1 gene expression is repressed by corticosterone and stress in rat hippocampus. J Neurosci 20:3129–3138PubMedGoogle Scholar
  36. 36.
    Karst H, Nair S, Velzing E et al (2002) Glucocorticoids alter calcium conductances and calcium channel subunit expression in basolateral amygdala neurons. Eur J Neurosci 16:1083–1089CrossRefPubMedGoogle Scholar
  37. 37.
    Joëls M, Velzing E, Nair S et al (2003) Acute stress increases calcium current amplitude in rat hippocampus: temporal changes in physiology and gene expression. Eur J Neurosci 18:1315–1324CrossRefPubMedGoogle Scholar
  38. 38.
    Chameau P, Qin Y, Spijker S et al (2007) Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus. J Neurophysiol 97:5–14CrossRefPubMedGoogle Scholar
  39. 39.
    Luebke JI, Dunlap K, Turner TJ (1993) Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron 11:895–902CrossRefPubMedGoogle Scholar
  40. 40.
    Turner TJ, Dunlap K (1995) Pharmacological characterization of presynaptic calcium channels using subsecond biochemical measurements of synaptosomal neurosecretion. Neuropharmacology 34:1469–1478CrossRefPubMedGoogle Scholar
  41. 41.
    Moghaddam B, Bolinao ML, Stein-Behrens B et al (1994) Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res 655:251–254CrossRefPubMedGoogle Scholar
  42. 42.
    Karst H, Berger S, Turiault M et al (2005) Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci USA 102:19204–19207CrossRefPubMedGoogle Scholar
  43. 43.
    Olijslagers JE, de Kloet ER, Elgersma Y et al (2008) Rapid changes in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic membrane mineralocorticoid receptors. Eur J Neurosci 27:2542–2550CrossRefPubMedGoogle Scholar
  44. 44.
    Burwell RD, Bucci DJ, Sanborn MR et al (2004) Perirhinal and postrhinal contributions to remote memory for context. J Neurosci 24:11023–11028CrossRefPubMedGoogle Scholar
  45. 45.
    Frankland PW, O’Brien C, Ohno M et al (2001) α-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature 411:309–313CrossRefPubMedGoogle Scholar
  46. 46.
    Liu F, Zheng XL, Li BM (2009) The anterior cingulate cortex is involved in retrieval of long-term/long-lasting but not short-term memory for step-through inhibitory avoidance in rats. Neurosci Lett 460:175–179CrossRefPubMedGoogle Scholar
  47. 47.
    Stanciu M, Wang Y, Kentor R et al (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–12206CrossRefPubMedGoogle Scholar
  48. 48.
    Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Research Center for Animal Hygiene and Food SafetyObihiro University of Agriculture and Veterinary MedicineObihiroJapan

Personalised recommendations